Latin Squares over Quasigroups

被引:2
|
作者
Galatenko, A. V. [1 ]
Nosov, V. A. [1 ]
Pankratiev, A. E. [1 ]
机构
[1] LomonosovMoscow State Univ, Moscow 119991, Russia
关键词
quasigroup; proper family of functions; subquasigroup;
D O I
10.1134/S1995080220020079
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a construction that allows generating large families of Latin squares, i.e., Cayley tables of finite quasigroups. This construction generalizes proper families of functions over Abelian groups introduced by Nosov and Pankratiev. We also show that all quasigroups generated by the original construction contain at least one subquasigroup, while the generalized construction generates quasigroups free of subquasigroups.
引用
收藏
页码:194 / 203
页数:10
相关论文
共 50 条
  • [21] Latin squares
    Bhaskar Bagchi
    Resonance, 2012, 17 (9) : 895 - 902
  • [22] Automata Over Abstract Finite Quasigroups
    Skobelev V.V.
    Skobelev V.G.
    Cybernetics and Systems Analysis, 2017, 53 (5) : 669 - 674
  • [23] Cleft comodules over Hopf quasigroups
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Soneira Calvo, C.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (06)
  • [24] THEORY AND APPLICATION OF SUM COMPOSITION OF LATIN SQUARES AND ORTHOGONAL LATIN SQUARES
    HEDAYAT, A
    SEIDEN, E
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 54 (02) : 85 - 113
  • [25] SIGNS ON LATIN SQUARES
    MARINI, A
    PIRILLO, G
    ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (04) : 490 - 505
  • [26] Incomplete Latin squares
    Yates, F
    JOURNAL OF AGRICULTURAL SCIENCE, 1936, 26 : 301 - 315
  • [27] On completing Latin squares
    Hajirasouliha, Iman
    Jowhari, Hossein
    Kumar, Ravi
    Sundaram, Ravi
    STACS 2007, PROCEEDINGS, 2007, 4393 : 524 - +
  • [28] Latin squares and unions
    Schonhardt, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1930, 163 (1/4): : 183 - 230
  • [29] Mappings of Latin squares
    Pittenger, AO
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 261 : 251 - 268
  • [30] Substructures in Latin squares
    Kwan, Matthew
    Sah, Ashwin
    Sawhney, Mehtaab
    Simkin, Michael
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (02) : 363 - 416