Credit card fraud detection using Machine Learning Techniques: A Comparative Analysis

被引:0
|
作者
Awoyemi, John O. [1 ]
Adetunmbi, Adebayo O. [1 ]
Oluwadare, Samuel A. [1 ]
机构
[1] Fed Univ Technol Akure, Dept Comp Sci, Akure, Nigeria
关键词
credit card fraud; data mining; naive bayes; decision tree; logistic regression; comparative analysis;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Financial fraud is an ever growing menace with far consequences in the financial industry. Data mining had played an imperative role in the detection of credit card fraud in online transactions. Credit card fraud detection, which is a data mining problem, becomes challenging due to two major reasons -first, the profiles of normal and fraudulent behaviours change constantly and secondly, credit card fraud data sets are highly skewed. The performance of fraud detection in credit card transactions is greatly affected by the sampling approach on dataset, selection of variables and detection technique(s) used. This paper investigates the performance of naive bayes, k-nearest neighbor and logistic regression on highly skewed credit card fraud data. Dataset of credit card transactions is sourced from European cardholders containing 284,807 transactions. A hybrid technique of under-sampling and oversampling is carried out on the skewed data. The three techniques are applied on the raw and preprocessed data. The work is implemented in Python. The performance of the techniques is evaluated based on accuracy, sensitivity, specificity, precision, Matthews correlation coefficient and balanced classification rate. The results shows of optimal accuracy for naive bayes, k-nearest neighbor and logistic regression classifiers are 97.92%, 97.69% and 54.86% respectively. The comparative results show that k-nearest neighbour performs better than naive bayes and logistic regression techniques.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Machine Learning Methods for Credit Card Fraud Detection: A Survey
    Dastidar, Kanishka Ghosh
    Caelen, Olivier
    Granitzer, Michael
    IEEE ACCESS, 2024, 12 : 158939 - 158965
  • [32] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [33] Credit Card Fraud Intelligent Detection Based on Machine Learning
    Mu, Duojiao
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1112 - 1117
  • [34] Review of Machine Learning Approach on Credit Card Fraud Detection
    Rejwan Bin Sulaiman
    Vitaly Schetinin
    Paul Sant
    Human-Centric Intelligent Systems, 2022, 2 (1-2): : 55 - 68
  • [35] Credit Card Fraud Detection using Deep Learning
    Shenvi, Pranali
    Samant, Neel
    Kumar, Shubham
    Kulkarni, Vaishali
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [36] Comparative Analysis of Different Distributions Dataset by Using Data Mining Techniques on Credit Card Fraud Detection
    Ata, Oguz
    Hazim, Layth
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2020, 27 (02): : 618 - 626
  • [37] CCFD: Efficient Credit Card Fraud Detection Using Meta-Heuristic Techniques and Machine Learning Algorithms
    Mosa, Diana T.
    Sorour, Shaymaa E.
    Abohany, Amr A.
    Maghraby, Fahima A.
    MATHEMATICS, 2024, 12 (14)
  • [38] A widespread survey on machine learning techniques and user substantiation methods for credit card fraud detection
    Berkmans T.J.
    Karthick S.
    International Journal of Business Intelligence and Data Mining, 2022, 22 (1-2): : 223 - 247
  • [39] Credit Card Fraud Identification Using Machine Learning Approaches
    Kumar, Pawan
    Iqbal, Fahad
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [40] Detection of fraud in IoT based credit card collected dataset using machine learning
    Alatawi, Mohammed Naif
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19