Machine Learning Methods for Credit Card Fraud Detection: A Survey

被引:0
|
作者
Dastidar, Kanishka Ghosh [1 ]
Caelen, Olivier [2 ]
Granitzer, Michael [1 ]
机构
[1] Univ Passau, Fac Math & Comp Sci, D-94032 Passau, Germany
[2] Worldline, Res & Dev Labs, B-1140 Brussels, Belgium
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Fraud; Surveys; Credit cards; Measurement; Machine learning; Taxonomy; Context modeling; Adaptation models; Feature extraction; Benchmark testing; Fraud detection; machine learning; neural networks; synthetic data; ENSEMBLE; MODEL; MAJORITY; RULES; SMOTE; RISK;
D O I
10.1109/ACCESS.2024.3487298
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The widespread adoption of online payments has been accompanied by a significant increase in fraudulent activities, resulting in billions of dollars in financial losses. As payment providers aim to tackle this with various preventive mechanisms, fraudsters also continuously evolve their methods to remain indistinguishable from genuine actors. This necessitates sophisticated fraud detection tools to supplement these security mechanisms. As the volume of transactions taking place per day is in the millions, relying solely on human investigation is expensive and ultimately unfeasible, leading to an emergence of research into data driven or statistical methods for fraud detection. Over the last decade, this research has evolved to tackle the various particularities of the domain. These include the skewed nature of the data, the evolving user and fraud behavior, and the learning representations of the context in which a transaction takes place. This work aims to provide the community with an in-depth overview of the different directions in which recent research on online fraud detection has focused. We develop a taxonomy of the domain based on these directions and organize our analysis accordingly. For each area, we focus on significant methodological advancements and highlight limitations or gaps in the current state-of-the-art solutions. Through our analysis, it emerges that one of the primary limiting factors that many researchers face is the lack of availability of high-quality credit card data. Therefore, we provide a first step in addressing this issue in the form of a data generation framework using generative adversarial networks (GANs). We hope that this survey serves as a foundation for researchers who want to address the multi-faceted problem of credit card fraud detection.
引用
收藏
页码:158939 / 158965
页数:27
相关论文
共 50 条
  • [1] Credit Card Fraud Detection - Machine Learning methods
    Varmedja, Dejan
    Karanovic, Mirjana
    Sladojevic, Srdjan
    Arsenovic, Marko
    Anderla, Andras
    2019 18TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2019,
  • [2] Credit Card Fraud Detection with Machine Learning Methods
    Goy, Gokhan
    Gezer, Cengiz
    Gungor, Vehbi Cagri
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 350 - 354
  • [3] A widespread survey on machine learning techniques and user substantiation methods for credit card fraud detection
    Berkmans T.J.
    Karthick S.
    International Journal of Business Intelligence and Data Mining, 2022, 22 (1-2): : 223 - 247
  • [4] Credit Card Fraud Detection Based on Machine Learning
    Fang, Yong
    Zhang, Yunyun
    Huang, Cheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 185 - 195
  • [5] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [6] Applications of Machine Learning in Fintech Credit Card Fraud Detection
    Lacruz, Francisco
    Saniie, Jafar
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 276 - 281
  • [7] Investigating Credit Card Payment Fraud with Detection Methods Using Advanced Machine Learning
    Chang, Victor
    Ali, Basit
    Golightly, Lewis
    Ganatra, Meghana Ashok
    Mohamed, Muhidin
    INFORMATION, 2024, 15 (08)
  • [8] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [9] Credit Card Fraud Detection with Automated Machine Learning Systems
    Plakandaras, Vasilios
    Gogas, Periklis
    Papadimitriou, Theophilos
    Tsamardinos, Ioannis
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [10] A Hybrid Machine Learning Approach for Credit Card Fraud Detection
    Gupta, Sonam
    Varshney, Tushtee
    Verma, Abhinav
    Goel, Lipika
    Yadav, Arun Kumar
    Singh, Arjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT, 2022, 13 (03)