Credit card fraud detection using Machine Learning Techniques: A Comparative Analysis

被引:0
|
作者
Awoyemi, John O. [1 ]
Adetunmbi, Adebayo O. [1 ]
Oluwadare, Samuel A. [1 ]
机构
[1] Fed Univ Technol Akure, Dept Comp Sci, Akure, Nigeria
关键词
credit card fraud; data mining; naive bayes; decision tree; logistic regression; comparative analysis;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Financial fraud is an ever growing menace with far consequences in the financial industry. Data mining had played an imperative role in the detection of credit card fraud in online transactions. Credit card fraud detection, which is a data mining problem, becomes challenging due to two major reasons -first, the profiles of normal and fraudulent behaviours change constantly and secondly, credit card fraud data sets are highly skewed. The performance of fraud detection in credit card transactions is greatly affected by the sampling approach on dataset, selection of variables and detection technique(s) used. This paper investigates the performance of naive bayes, k-nearest neighbor and logistic regression on highly skewed credit card fraud data. Dataset of credit card transactions is sourced from European cardholders containing 284,807 transactions. A hybrid technique of under-sampling and oversampling is carried out on the skewed data. The three techniques are applied on the raw and preprocessed data. The work is implemented in Python. The performance of the techniques is evaluated based on accuracy, sensitivity, specificity, precision, Matthews correlation coefficient and balanced classification rate. The results shows of optimal accuracy for naive bayes, k-nearest neighbor and logistic regression classifiers are 97.92%, 97.69% and 54.86% respectively. The comparative results show that k-nearest neighbour performs better than naive bayes and logistic regression techniques.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Detecting Credit Card Fraud using Machine Learning
    Almuteer A.H.
    Aloufi A.A.
    Alrashidi W.O.
    Alshobaili J.F.
    Ibrahim D.M.
    International Journal of Interactive Mobile Technologies, 2021, 15 (24) : 108 - 122
  • [22] Credit Card Fraud Detection Using Anomaly Techniques
    Sharmila, V. Ceronmani
    Kumar, Kiran R.
    Sundaram, R.
    Samyuktha, D.
    Harish, R.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [23] Detection of Credit Card Fraud Transactions using Machine Learning Algorithms and Neural Networks: A Comparative Study
    Dighe, Deepti
    Patil, Sneha
    Kokate, Shrikant
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [24] Credit Card Fraud Detection Using Various Machine Learning and Deep Learning Approaches
    Gorte, Ashvini S.
    Mohod, S. W.
    Keole, R. R.
    Mahore, T. R.
    Pande, Sagar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 621 - 628
  • [25] Developing a Credit Card Fraud Detection Model using Machine Learning Approaches
    Khan, Shahnawaz
    Mishra, Bharavi
    Alourani, Abdullah
    Ali, Ashraf
    Kamal, Mustafa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 411 - 418
  • [26] Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture
    Malik, Esraa Faisal
    Khaw, Khai Wah
    Belaton, Bahari
    Wong, Wai Peng
    Chew, XinYing
    MATHEMATICS, 2022, 10 (09)
  • [27] Real-time Credit Card Fraud Detection Using Machine Learning
    Thennakoon, Anuruddha
    Bhagyani, Chee
    Premadasa, Sasitha
    Mihiranga, Shalitha
    Kuruwitaarachchi, Nuwan
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 488 - 493
  • [28] Applications of Machine Learning in Fintech Credit Card Fraud Detection
    Lacruz, Francisco
    Saniie, Jafar
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 276 - 281
  • [29] Credit Card Fraud Detection with Automated Machine Learning Systems
    Plakandaras, Vasilios
    Gogas, Periklis
    Papadimitriou, Theophilos
    Tsamardinos, Ioannis
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [30] A Hybrid Machine Learning Approach for Credit Card Fraud Detection
    Gupta, Sonam
    Varshney, Tushtee
    Verma, Abhinav
    Goel, Lipika
    Yadav, Arun Kumar
    Singh, Arjun
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT, 2022, 13 (03)