Parametrically driven Nonlinear oscillators with an impurity

被引:0
|
作者
Zhang, Z [1 ]
Tang, Y [1 ]
机构
[1] Xiangtan Univ, Dept Phys, Xiangtan 411105, Peoples R China
关键词
D O I
10.1088/0256-307X/19/2/333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain. In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.
引用
收藏
页码:246 / 248
页数:3
相关论文
共 50 条
  • [41] Random Perturbations of Periodically Driven Nonlinear Oscillators
    Lingala, Nishanth
    Namachchivaya, N. Sri
    Pavlyukevich, Ilya
    Wedig, Walter
    IUTAM SYMPOSIUM ANALYTICAL METHODS IN NONLINEAR DYNAMICS, 2016, 19 : 91 - 100
  • [42] Homoclinic bifurcation sets of driven nonlinear oscillators
    Sanjuan, MAF
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (08) : 1745 - 1752
  • [43] Predicting the closed-loop stability and oscillation amplitude of nonlinear parametrically amplified oscillators
    Zega, V.
    Nitzan, S.
    Li, M.
    Ahn, C. H.
    Ng, E.
    Hong, V.
    Yang, Y.
    Kenny, T.
    Corigliano, A.
    Horsley, D. A.
    APPLIED PHYSICS LETTERS, 2015, 106 (23)
  • [44] CHAOTIC DYNAMICS OF PARAMETRICALLY EXCITED OSCILLATORS
    VAVRIV, DM
    RYABOV, VB
    CHERNYSHOV, IY
    ZHURNAL TEKHNICHESKOI FIZIKI, 1991, 61 (12): : 1 - 11
  • [45] ON THE DYNAMICS OF COUPLED PARAMETRICALLY FORCED OSCILLATORS
    Moehlis, Jeff
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2008, PTS A AND B, 2009, : 711 - 718
  • [46] Critical quantum geometric tensors of parametrically-driven nonlinear resonators
    Zhang, Hao-long
    Lu, Jia-hao
    Chen, Ken
    Yu, Xue-jia
    Wu, Fan
    Yang, Zhen-biao
    Zheng, Shi-biao
    OPTICS EXPRESS, 2024, 32 (13): : 22566 - 22577
  • [47] A quasi-periodic route to chaos in a parametrically driven nonlinear medium
    Cabanas, Ana M.
    Rivas, Ronald
    Perez, Laura M.
    Velez, Javier A.
    Diaz, Pablo
    Clerc, Marcel G.
    Pleiner, Harald
    Laroze, David
    Malomed, Boris A.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [48] Empirical stability criteria for parametrically driven solitons of the nonlinear Schrodinger equation
    Mertens, Franz G.
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (31)
  • [49] Nonlocal solitons in the parametrically driven nonlinear Schrodinger equation: Stability analysis
    Molchan, Maxim A.
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [50] Structure of soliton bound states in the parametrically driven and damped nonlinear systems
    Bogdan, M. M.
    Charkina, O. V.
    LOW TEMPERATURE PHYSICS, 2022, 48 (12) : 1062 - 1070