Parametrically driven Nonlinear oscillators with an impurity

被引:0
|
作者
Zhang, Z [1 ]
Tang, Y [1 ]
机构
[1] Xiangtan Univ, Dept Phys, Xiangtan 411105, Peoples R China
关键词
D O I
10.1088/0256-307X/19/2/333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain. In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.
引用
收藏
页码:246 / 248
页数:3
相关论文
共 50 条
  • [31] PARAMETRICALLY PUMPED ELECTRON OSCILLATORS
    TAN, J
    GABRIELSE, G
    PHYSICAL REVIEW A, 1993, 48 (04): : 3105 - 3122
  • [32] Parametrically driven nonlinear oscillator at a few-photon level
    Gevorgyan, T. V.
    Kryuchkyan, G. Yu
    JOURNAL OF MODERN OPTICS, 2013, 60 (11) : 860 - 868
  • [33] NONLINEAR DYNAMICS OF A PARAMETRICALLY DRIVEN SINE-GORDON SYSTEM
    GRONBECHJENSEN, N
    KIVSHAR, YS
    SAMUELSEN, MR
    PHYSICAL REVIEW B, 1993, 47 (09): : 5013 - 5021
  • [34] Stable complexes of parametrically driven, damped nonlinear Schrodinger solitons
    Barashenkov, IV
    Zemlyanaya, EV
    PHYSICAL REVIEW LETTERS, 1999, 83 (13) : 2568 - 2571
  • [35] Phase locking and quantum statistics in a parametrically driven nonlinear resonator
    Hovsepyan, G. H.
    Shahinyan, A. R.
    Chew, Lock Yue
    Kryuchkyan, G. Yu.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [36] Bright and dark spatial solitons in parametrically driven nonlinear interferometers
    Romanov, OG
    LFNM 2004: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON LASER AND FIBER-OPTICAL NETWORKS MODELING, 2004, : 235 - 237
  • [37] TOPOGRAPHY OF ATTRACTORS OF THE PARAMETRICALLY DRIVEN NONLINEAR SCHRODINGER-EQUATION
    BONDILA, M
    BARASHENKOV, IV
    BOGDAN, MM
    PHYSICA D, 1995, 87 (1-4): : 314 - 320
  • [38] GAP SOLITONS IN DAMPED AND PARAMETRICALLY DRIVEN NONLINEAR DIATOMIC LATTICES
    HUANG, GX
    PHYSICAL REVIEW E, 1994, 49 (06): : 5893 - 5896
  • [39] Heteroclinic dynamics in the nonlocal parametrically driven nonlinear Schrodinger equation
    Higuera, M
    Porter, J
    Knobloch, E
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (3-4) : 155 - 187
  • [40] Intrinsic localized modes in parametrically driven arrays of nonlinear resonators
    Kenig, Eyal
    Malomed, Boris A.
    Cross, M. C.
    Lifshitz, Ron
    PHYSICAL REVIEW E, 2009, 80 (04):