Parametrically driven Nonlinear oscillators with an impurity

被引:0
|
作者
Zhang, Z [1 ]
Tang, Y [1 ]
机构
[1] Xiangtan Univ, Dept Phys, Xiangtan 411105, Peoples R China
关键词
D O I
10.1088/0256-307X/19/2/333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain. In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.
引用
收藏
页码:246 / 248
页数:3
相关论文
共 50 条
  • [21] Multi-stability and basin crisis in synchronized parametrically driven oscillators
    Olasunkanmi I. Olusola
    Uchechukwu E. Vincent
    Abdulahi N. Njah
    Nonlinear Dynamics, 2010, 62 : 717 - 727
  • [22] ABOUT SYNCHRONIZATION OF STOCHASTIC-OSCILLATIONS OF PARAMETRICALLY EXITED NONLINEAR OSCILLATORS
    VERICHEV, NN
    MAKSIMOV, AG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1989, 32 (08): : 962 - 965
  • [23] Pattern selection in parametrically driven arrays of nonlinear resonators
    Kenig, Eyal
    Lifshitz, Ron
    Cross, M. C.
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [24] Parametrically driven nonlinear Dirac equation with arbitrary nonlinearity
    Cooper, Fred
    Khare, Avinash
    Quintero, Niurka R.
    Sanchez-Rey, Bernardo
    Mertens, Franz G.
    Saxena, Avadh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (07)
  • [25] Nonlinear dynamics of parametrically driven particles in a Φ6 potential
    Tchawoua, C.
    Siewe, M. Siewe
    Tchatchueng, S.
    Kakmeni, F. M. Moukam
    NONLINEARITY, 2008, 21 (05) : 1041 - 1055
  • [26] NONCUTOFF KINKS IN DAMPED AND PARAMETRICALLY DRIVEN NONLINEAR LATTICES
    HUANG, GX
    SHEN, J
    QUAN, HJ
    PHYSICAL REVIEW B, 1993, 48 (22): : 16795 - 16798
  • [27] Global attraction to the origin in a parametrically driven nonlinear oscillator
    Bartuccelli, MV
    Deane, JHB
    Gentile, G
    Gourley, SA
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (01) : 1 - 11
  • [28] Basin reversal in nonlinear driven oscillators
    Guiqin Kong
    Yongxiang Zhang
    Nonlinear Dynamics, 2019, 96 : 1213 - 1231
  • [29] Basin reversal in nonlinear driven oscillators
    Kong, Guiqin
    Zhang, Yongxiang
    NONLINEAR DYNAMICS, 2019, 96 (02) : 1213 - 1231
  • [30] Synchronization of randomly driven nonlinear oscillators
    Jensen, RV
    PHYSICAL REVIEW E, 1998, 58 (06): : R6907 - R6910