Quantum geometry of elliptic Calabi-Yau manifolds

被引:0
|
作者
Klemm, Albrecht [1 ]
Manschot, Jan [2 ]
Wotschke, Thomas [1 ]
机构
[1] Univ Bonn, Bethe Ctr Theoret Phys, Inst Phys, D-53115 Bonn, Germany
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
MIRROR SYMMETRY; STABLE SHEAVES; BETTI NUMBERS; MODULI SPACE; STRINGS; MAP; RANK-2;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quantum geometry of the class of Calabi-Yau three-folds, which are elliptic fibrations over a two-dimensional toric base. A holomorphic anomaly equation for the topological string free energy is proposed, which is iterative in the genus expansion as well as in the curve classes in the base. T-duality on the fibre implies that the topological string free energy also captures the BPS-invariants of D4-branes wrapping the elliptic fibre and a class in the base. We verify this proposal by explicit computation of the BPS invariants of 3 D4-branes on the rational elliptic surface.
引用
收藏
页码:849 / 917
页数:69
相关论文
共 50 条
  • [21] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [22] CALABI-YAU MANIFOLDS - MOTIVATIONS AND CONSTRUCTIONS
    HUBSCH, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) : 291 - 318
  • [23] ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS
    Haskins, Mark
    Hein, Hans-Joachim
    Nordstroem, Johannes
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 213 - 265
  • [24] MODULI SPACE OF CALABI-YAU MANIFOLDS
    CANDELAS, P
    DELAOSSA, XC
    NUCLEAR PHYSICS B, 1991, 355 (02) : 455 - 481
  • [25] COMPLETE INTERSECTION CALABI-YAU MANIFOLDS
    CANDELAS, P
    DALE, AM
    LUTKEN, CA
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1988, 298 (03) : 493 - 525
  • [26] CALABI-YAU DOMAINS IN THREE MANIFOLDS
    Martin, Francisco
    Meeks, William H., III
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) : 1329 - 1344
  • [27] Calabi-Yau Manifolds with Affine Structures
    Kokarev, V. N.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 669 - 671
  • [28] CALABI-YAU MANIFOLDS AND A CONJECTURE OF KOBAYASHI
    PETERNELL, T
    MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) : 305 - 318
  • [29] NEW COMPACTIFICATIONS ON CALABI-YAU MANIFOLDS
    NEPOMECHIE, RI
    WU, YS
    ZEE, A
    PHYSICS LETTERS B, 1985, 158 (04) : 311 - 315
  • [30] Calabi-Yau manifolds and sporadic groups
    Andreas Banlaki
    Abhishek Chowdhury
    Abhiram Kidambi
    Maria Schimpf
    Harald Skarke
    Timm Wrase
    Journal of High Energy Physics, 2018