Quantum geometry of elliptic Calabi-Yau manifolds

被引:0
|
作者
Klemm, Albrecht [1 ]
Manschot, Jan [2 ]
Wotschke, Thomas [1 ]
机构
[1] Univ Bonn, Bethe Ctr Theoret Phys, Inst Phys, D-53115 Bonn, Germany
[2] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
MIRROR SYMMETRY; STABLE SHEAVES; BETTI NUMBERS; MODULI SPACE; STRINGS; MAP; RANK-2;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quantum geometry of the class of Calabi-Yau three-folds, which are elliptic fibrations over a two-dimensional toric base. A holomorphic anomaly equation for the topological string free energy is proposed, which is iterative in the genus expansion as well as in the curve classes in the base. T-duality on the fibre implies that the topological string free energy also captures the BPS-invariants of D4-branes wrapping the elliptic fibre and a class in the base. We verify this proposal by explicit computation of the BPS invariants of 3 D4-branes on the rational elliptic surface.
引用
收藏
页码:849 / 917
页数:69
相关论文
共 50 条
  • [31] SYMPLECTIC CALABI-YAU MANIFOLDS, MINIMAL SURFACES AND THE HYPERBOLIC GEOMETRY OF THE CONIFOLD
    Fine, Joel
    Panov, Dmitri
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 82 (01) : 155 - 205
  • [32] TORIC GEOMETRY AND CALABI-YAU COMPACTIFICATIONS
    Kreuzer, M.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (05): : 613 - 625
  • [33] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [34] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [35] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [36] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244
  • [37] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [38] Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms
    Bourjaily, Jacob L.
    He, Yang-Hui
    McLeod, Andrew J.
    von Hippel, Matt
    Wilhelm, Matthias
    PHYSICAL REVIEW LETTERS, 2018, 121 (07)
  • [39] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [40] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199