Stone Duality for Markov Processes

被引:13
|
作者
Kozen, Dexter [1 ]
Larsen, Kim G. [2 ]
Mardare, Radu [2 ]
Panangaden, Prakash [3 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[3] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
关键词
BISIMULATION;
D O I
10.1109/LICS.2013.38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define Aumann algebras, an algebraic analog of probabilistic modal logic. An Aumann algebra consists of a Boolean algebra with operators modeling probabilistic transitions. We prove a Stone-type duality theorem between countable Aumann algebras and countably-generated continuous-space Markov processes. Our results subsume existing results on completeness of probabilistic modal logics for Markov processes.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [41] STONE DUALITY FOR STABLE FUNCTIONS
    EHRHARD, T
    MALACARIA, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 530 : 1 - 15
  • [42] Regular languages and stone duality
    Pippenger N.
    Theory of Computing Systems, 1997, 30 (2) : 121 - 134
  • [44] A generalization of the Stone Duality Theorem
    Dimov, G.
    Ivanova-Dimova, E.
    Vakarelov, D.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 237 - 261
  • [45] A Duality Approach for Regret Minimization in Average-Reward Ergodic Markov Decision Processes
    Gong, Hao
    Wang, Mengdi
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 862 - 883
  • [46] Monoidal Extended Stone Duality
    Birkmann, Fabian
    Urbat, Henning
    Milius, Stefan
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PT I, FOSSACS 2024, 2024, 14574 : 144 - 165
  • [47] Inversion, duality and Doob h-transforms for self-similar Markov processes
    Alili, Larbi
    Chaumont, Loic
    Graczyk, Piotr
    Zak, Tomas
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [48] Optimal Stopping of Partially Observable Markov Processes: A Filtering-Based Duality Approach
    Ye, Fan
    Zhou, Enlu
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (10) : 2698 - 2704
  • [49] Regular languages and stone duality
    Pippenger, N.
    Theory of Computing Systems, 30 (02): : 121 - 134
  • [50] On Time Duality for Markov Chains
    Keller, Peter
    Roelly, Sylvie
    Valleriani, Angelo
    STOCHASTIC MODELS, 2015, 31 (01) : 98 - 118