Stone Duality for Markov Processes

被引:13
|
作者
Kozen, Dexter [1 ]
Larsen, Kim G. [2 ]
Mardare, Radu [2 ]
Panangaden, Prakash [3 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[3] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
关键词
BISIMULATION;
D O I
10.1109/LICS.2013.38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define Aumann algebras, an algebraic analog of probabilistic modal logic. An Aumann algebra consists of a Boolean algebra with operators modeling probabilistic transitions. We prove a Stone-type duality theorem between countable Aumann algebras and countably-generated continuous-space Markov processes. Our results subsume existing results on completeness of probabilistic modal logics for Markov processes.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条