Stone Duality for Markov Processes

被引:13
|
作者
Kozen, Dexter [1 ]
Larsen, Kim G. [2 ]
Mardare, Radu [2 ]
Panangaden, Prakash [3 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
[3] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
关键词
BISIMULATION;
D O I
10.1109/LICS.2013.38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define Aumann algebras, an algebraic analog of probabilistic modal logic. An Aumann algebra consists of a Boolean algebra with operators modeling probabilistic transitions. We prove a Stone-type duality theorem between countable Aumann algebras and countably-generated continuous-space Markov processes. Our results subsume existing results on completeness of probabilistic modal logics for Markov processes.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 50 条
  • [1] Unrestricted Stone Duality for Markov Processes
    Furber, Robert
    Kozen, Dexter
    Larsen, Kim
    Mardare, Radu
    Panangaden, Prakash
    2017 32ND ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2017,
  • [2] Duality for labelled Markov processes
    Mislove, M
    Ouaknine, J
    Pavlovic, D
    Worrell, J
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, PROCEEDINGS, 2004, 2987 : 393 - 407
  • [3] MARKOV PROCESSES AND THEIR FUNCTIONALS IN DUALITY
    WALSH, JB
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 24 (03): : 229 - &
  • [4] A Metrized Duality Theorem for Markov Processes
    Kozen, Dexter
    Mardare, Radu
    Panangaden, Prakash
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2014, 308 : 211 - 227
  • [5] Intertwining and duality for consistent Markov processes
    Floreani, Simone
    Jansen, Sabine
    Redig, Frank
    Wagner, Stefan
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29 : 1 - 34
  • [6] ALGEBRAIC DUALITY OF MARKOV-PROCESSES
    VERVAAT, W
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) : 185 - 186
  • [7] On the notion(s) of duality for Markov processes
    Jansen, Sabine
    Kurt, Noemi
    PROBABILITY SURVEYS, 2014, 11 : 59 - 120
  • [8] Duality and Cones of Markov Processes and Their Semigroups
    Moehle, M.
    MARKOV PROCESSES AND RELATED FIELDS, 2013, 19 (01) : 149 - 162
  • [9] STOPPED DISTRIBUTIONS FOR MARKOV-PROCESSES IN DUALITY
    FALKNER, N
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (01): : 43 - 51
  • [10] CIRCUIT DUALITY FOR RECURRENT MARKOV-PROCESSES
    KALPAZIDOU, S
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1995, 14 (02) : 187 - 211