Maximum likelihood constrained Gaussian kernel probability density function estimation using continuous ACO

被引:0
|
作者
Vedaie, Hosein Amir [1 ]
Farzan, Ali [1 ]
机构
[1] IAU, Shabestar Branch, Dept Comp Engn, Shabestar, Iran
来源
OPTIK | 2016年 / 127卷 / 04期
关键词
Probability density function; Ant colony optimization; Maximum likelihood; Gaussian kernel; COLONY OPTIMIZATION; REGRESSION;
D O I
10.1016/j.ijleo.2015.11.088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Probability density function (PDF) estimation problem is a core stage of the pattern recognition, data analysis and other engineering applications. One of the popular maximum -likelihood (ML) constrained methods for Gaussian kernel PDF estimation is expectation maximization (EM) algorithm. However, it suffers from low convergence speed and also ill positioning of the kernels. We proposed a new PDF estimation method based on the continuous domain ant colony optimization (ACOR) with the aim to maximize the likelihood of data patterns. The proposed approach outperforms the EM algorithm in estimating the Gaussian kernel parameters. One stochastic dataset involved in evaluating the algorithm. Results show that applying modified ACOR provides more accurate estimation of the PDF parameters in lower convergence time. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:2354 / 2359
页数:6
相关论文
共 50 条
  • [41] NONPARAMETRIC PROBABILITY DENSITY-ESTIMATION BY DISCRETE MAXIMUM PENALIZED-LIKELIHOOD CRITERIA
    SCOTT, DW
    TAPIA, RA
    THOMPSON, JR
    ANNALS OF STATISTICS, 1980, 8 (04): : 820 - 832
  • [42] Unsupervised Bit Error Rate Estimation Using Maximum Likelihood Kernel Methods
    Dong, Jia
    Ait-Idir, Tarik
    Saoudi, Samir
    2012 IEEE 75TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2012,
  • [43] ON ESTIMATION OF A GAUSSIAN CONVOLUTION PROBABILITY DENSITY
    SCHWARTZ, SC
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (02) : 447 - &
  • [44] SEQUENTIAL ESTIMATION OF A CONTINUOUS PROBABILITY DENSITY-FUNCTION AND MODE
    YAMATO, H
    BULLETIN OF MATHEMATICAL STATISTICS, 1971, 14 (3-4): : 1 - &
  • [45] Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework
    Nana Yoshimitsu
    Takuto Maeda
    Tomonari Sei
    Earth, Planets and Space, 75
  • [46] Estimation of source parameters using a non-Gaussian probability density function in a Bayesian framework
    Yoshimitsu, Nana
    Maeda, Takuto
    Sei, Tomonari
    EARTH PLANETS AND SPACE, 2023, 75 (01):
  • [47] A new maximum entropy method for estimation of multimodal probability density function
    Li, G.
    Wang, Y.X.
    Zeng, Y.
    He, W.X.
    Applied Mathematical Modelling, 2022, 102 : 137 - 152
  • [48] A new maximum entropy method for estimation of multimodal probability density function
    Li, G.
    Wang, Y. X.
    Zeng, Y.
    He, W. X.
    APPLIED MATHEMATICAL MODELLING, 2022, 102 : 137 - 152
  • [49] CONSISTENCY OF 2 NONPARAMETRIC MAXIMUM PENALIZED LIKELIHOOD ESTIMATORS OF THE PROBABILITY DENSITY-FUNCTION
    KLONIAS, VK
    ANNALS OF STATISTICS, 1982, 10 (03): : 811 - 824
  • [50] MAXIMUM ENTROPY ESTIMATION OF THE PROBABILITY DENSITY FUNCTION FROM THE HISTOGRAM USING ORDER STATISTIC CONSTRAINTS
    Kirlin, R. Lynn
    Reza, Ali M.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6407 - 6410