Maximum likelihood constrained Gaussian kernel probability density function estimation using continuous ACO

被引:0
|
作者
Vedaie, Hosein Amir [1 ]
Farzan, Ali [1 ]
机构
[1] IAU, Shabestar Branch, Dept Comp Engn, Shabestar, Iran
来源
OPTIK | 2016年 / 127卷 / 04期
关键词
Probability density function; Ant colony optimization; Maximum likelihood; Gaussian kernel; COLONY OPTIMIZATION; REGRESSION;
D O I
10.1016/j.ijleo.2015.11.088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Probability density function (PDF) estimation problem is a core stage of the pattern recognition, data analysis and other engineering applications. One of the popular maximum -likelihood (ML) constrained methods for Gaussian kernel PDF estimation is expectation maximization (EM) algorithm. However, it suffers from low convergence speed and also ill positioning of the kernels. We proposed a new PDF estimation method based on the continuous domain ant colony optimization (ACOR) with the aim to maximize the likelihood of data patterns. The proposed approach outperforms the EM algorithm in estimating the Gaussian kernel parameters. One stochastic dataset involved in evaluating the algorithm. Results show that applying modified ACOR provides more accurate estimation of the PDF parameters in lower convergence time. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:2354 / 2359
页数:6
相关论文
共 50 条
  • [21] Probability density estimation using a Gaussian clustering algorithm
    Cwik, J
    Koronacki, J
    NEURAL COMPUTING & APPLICATIONS, 1996, 4 (03): : 149 - 160
  • [22] Parameter estimation of non-Gaussian probability density of one-dimensional signals and interferences by iterative method of maximum likelihood
    Ibatoulline, EA
    2003 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), VOLS 1 AND 2, SYMPOSIUM RECORD, 2003, : 363 - 366
  • [23] Constrained Maximum Likelihood Channel Estimation for CoFAR
    Kang, Bosung
    Gogineni, Sandeep
    Rangaswamy, Muralidhar
    Guerci, Joseph R.
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1162 - 1166
  • [25] Numerical algorithms for constrained maximum likelihood estimation
    Li, ZF
    Osborne, MR
    Prvan, T
    ANZIAM JOURNAL, 2003, 45 : 91 - 114
  • [26] Maximum likelihood estimation of Gaussian mixture models using stochastic search
    Ari, Caglar
    Aksoy, Selim
    Arikan, Orhan
    PATTERN RECOGNITION, 2012, 45 (07) : 2804 - 2816
  • [27] Error bounds and improved probability estimation using the maximum likelihood set
    Karakos, Damianos
    Khudanpur, Sanjeev
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1851 - 1855
  • [28] Haplotype estimation using KIR genotypes: A constrained maximum likelihood method
    Gourraud, PA
    Denis, L
    Bignon, J
    Middleton, D
    Cambon-Thomsen, A
    TISSUE ANTIGENS, 2005, 66 (05): : 432 - 432
  • [29] Shape constrained kernel density estimation
    Birke, Melanie
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (08) : 2851 - 2862
  • [30] Kernel estimation for a superpopulation probability density function under informative selection
    Bonnéry D.
    Breidt F.J.
    Coquet F.
    METRON, 2017, 75 (3) : 301 - 318