Maximum likelihood constrained Gaussian kernel probability density function estimation using continuous ACO

被引:0
|
作者
Vedaie, Hosein Amir [1 ]
Farzan, Ali [1 ]
机构
[1] IAU, Shabestar Branch, Dept Comp Engn, Shabestar, Iran
来源
OPTIK | 2016年 / 127卷 / 04期
关键词
Probability density function; Ant colony optimization; Maximum likelihood; Gaussian kernel; COLONY OPTIMIZATION; REGRESSION;
D O I
10.1016/j.ijleo.2015.11.088
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Probability density function (PDF) estimation problem is a core stage of the pattern recognition, data analysis and other engineering applications. One of the popular maximum -likelihood (ML) constrained methods for Gaussian kernel PDF estimation is expectation maximization (EM) algorithm. However, it suffers from low convergence speed and also ill positioning of the kernels. We proposed a new PDF estimation method based on the continuous domain ant colony optimization (ACOR) with the aim to maximize the likelihood of data patterns. The proposed approach outperforms the EM algorithm in estimating the Gaussian kernel parameters. One stochastic dataset involved in evaluating the algorithm. Results show that applying modified ACOR provides more accurate estimation of the PDF parameters in lower convergence time. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:2354 / 2359
页数:6
相关论文
共 50 条
  • [31] Kernel Bandwidth Estimation in Methods based on Probability Density Function Modelling
    Bors, Adrian G.
    Nasios, Nikolaos
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3354 - 3357
  • [32] Estimation method of the capsizing probability in irregular beam seas using non-Gaussian probability density function
    Atsuo Maki
    Journal of Marine Science and Technology, 2017, 22 : 351 - 360
  • [33] Estimation method of the capsizing probability in irregular beam seas using non-Gaussian probability density function
    Maki, Atsuo
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2017, 22 (02) : 351 - 360
  • [34] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [35] Fast Kernel Density Estimation using Gaussian Filter Approximation
    Bullmann, Markus
    Fetzer, Toni
    Ebner, Frank
    Deinzer, Frank
    Grzegorzek, Marcin
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1233 - 1240
  • [36] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137
  • [37] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    De Oliveira, Victor
    Ferreira, Marco A. R.
    METRIKA, 2011, 74 (02) : 167 - 183
  • [38] Maximum likelihood and restricted maximum likelihood estimation for a class of Gaussian Markov random fields
    Victor De Oliveira
    Marco A. R. Ferreira
    Metrika, 2011, 74 : 167 - 183
  • [39] Probability Density Estimation Using Two New Kernel Functions
    Rodchuen, Manachai
    Suwattee, Prachoom
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (01): : 1 - 12
  • [40] NONPARAMETRIC PROBABILITY DENSITY ESTIMATION BY MAXIMUM PENALIZED LIKELIHOOD METHOD FOR NEGATIVELY DEPENDENT SEQUENCE
    Shirazi, E.
    Nirumand, H. A.
    Doosti, H.
    PAKISTAN JOURNAL OF STATISTICS, 2008, 24 (02): : 99 - 109