Dynamic Minkowski Sum of Convex Shapes

被引:0
|
作者
Behar, Evan [1 ]
Lien, Jyh-Ming [1 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
关键词
DECOMPOSITION; CONSTRUCTION; POLYHEDRA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computing the Minkowski sums of rotating objects has always been done naively by re-computing every Minkowski sum from scratch. The correspondences between the Minkowski sums are typically completely ignored. We propose a method, called DYMSUM, that can efficiently update the Minkowski sums of rotating convex polyhedra. We show that DYMSUM is significantly more efficient than the traditional approach, in particular when the size of the input polyhedra are large and when the rotation is small between frames. From our experimental results, we show that the computation time of the proposed method grows slowly with respect to the size of the input comparing to the naive approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Minkowski Sum Selection and Finding
    Luo, Cheng-Wei
    Liu, Hsiao-Fei
    Chen, Peng-An
    Chao, Kun-Mao
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 460 - 471
  • [32] Computing the Minkowski sum of prisms
    Pallaschke, D.
    Rosenmuller, J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) : 321 - 341
  • [33] Invertible Minkowski sum of figures
    Univ of Tokyo, Tokyo, Japan
    Systems and Computers in Japan, 1998, 29 (07) : 33 - 40
  • [34] CONVEX SUM OF CONVEX FUNCTIONS
    TRIMBLE, SY
    MATHEMATISCHE ZEITSCHRIFT, 1969, 109 (02) : 112 - &
  • [35] Minkowski valuations on convex functions
    Andrea Colesanti
    Monika Ludwig
    Fabian Mussnig
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [36] MINKOWSKI DECOMPOSITION OF CONVEX SETS
    SALLEE, GT
    ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (03) : 266 - &
  • [37] Minkowski valuations on convex functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [38] ON CONVEX SUM OF CERTAIN CONVEX FUNCTIONS
    TRIMBLE, SY
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 113 - &
  • [39] The Minkowski sum of linear Cantor sets
    Hare, Kevin G.
    Sidorov, Nikita
    ACTA ARITHMETICA, 2024, 212 (02) : 173 - 193
  • [40] SURFACE MODELLING BY MEANS OF MINKOWSKI SUM
    Velichova, Daniela
    APLIMAT 2009: 8TH INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 465 - 474