Dynamic Minkowski Sum of Convex Shapes

被引:0
|
作者
Behar, Evan [1 ]
Lien, Jyh-Ming [1 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
关键词
DECOMPOSITION; CONSTRUCTION; POLYHEDRA;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computing the Minkowski sums of rotating objects has always been done naively by re-computing every Minkowski sum from scratch. The correspondences between the Minkowski sums are typically completely ignored. We propose a method, called DYMSUM, that can efficiently update the Minkowski sums of rotating convex polyhedra. We show that DYMSUM is significantly more efficient than the traditional approach, in particular when the size of the input polyhedra are large and when the rotation is small between frames. From our experimental results, we show that the computation time of the proposed method grows slowly with respect to the size of the input comparing to the naive approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] The Flag Polynomial of the Minkowski Sum of Simplices
    Agnarsson, Geir
    ANNALS OF COMBINATORICS, 2013, 17 (03) : 401 - 426
  • [42] On the Minkowski distances and products of sum sets
    Roche-Newton, Oliver
    Rudnev, Misha
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (02) : 507 - 526
  • [43] The Minkowski sum of a simple polygon and a segment
    Pustylnik, G
    Sharir, M
    INFORMATION PROCESSING LETTERS, 2003, 85 (04) : 179 - 184
  • [44] Successive radii and Orlicz Minkowski sum
    Fangwei Chen
    Congli Yang
    Miao Luo
    Monatshefte für Mathematik, 2016, 179 : 201 - 219
  • [45] On the Minkowski distances and products of sum sets
    Oliver Roche-Newton
    Misha Rudnev
    Israel Journal of Mathematics, 2015, 209 : 507 - 526
  • [46] Successive radii and Orlicz Minkowski sum
    Chen, Fangwei
    Yang, Congli
    Luo, Miao
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 201 - 219
  • [47] Computing the Minkowski sum of monotone polygons
    HernandezBarrera, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (02) : 218 - 222
  • [48] The Flag Polynomial of the Minkowski Sum of Simplices
    Geir Agnarsson
    Annals of Combinatorics, 2013, 17 : 401 - 426
  • [49] TWO APPROXIMATE MINKOWSKI SUM ALGORITHMS
    Milenkovic, Victor
    Sacks, Elisha
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (04) : 485 - 509
  • [50] Computing the Minkowski sum of ruled surfaces
    Mühlthaler, H
    Pottmann, H
    GRAPHICAL MODELS, 2003, 65 (06) : 369 - 384