Minkowski valuations on convex functions

被引:33
|
作者
Colesanti, Andrea [1 ]
Ludwig, Monika [2 ]
Mussnig, Fabian [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Vienna Univ Technol, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-1046, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
INVARIANT VALUATIONS;
D O I
10.1007/s00526-017-1243-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Aclassification of SL(n) contravariant Minkowski valuations on convex functions and a characterization of the projection body operator are established. The associated LYZ measure is characterized. In addition, a new SL(n) covariant Minkowski valuation on convex functions is defined and characterized.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Minkowski valuations on convex functions
    Andrea Colesanti
    Monika Ludwig
    Fabian Mussnig
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [2] Minkowski Valuations in Affine Convex Geometry
    Henkel, Jakob
    Wannerer, Thomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024,
  • [3] Valuations on Convex Functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) : 2384 - 2410
  • [4] SMOOTH VALUATIONS ON CONVEX FUNCTIONS
    Knoerr, Jonas
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (02) : 801 - 835
  • [5] From valuations on convex bodies to convex functions
    Knoerr, Jonas
    Ulivelli, Jacopo
    MATHEMATISCHE ANNALEN, 2024, 390 (04) : 5987 - 6011
  • [6] Monotone Valuations on the Space of Convex Functions
    Cavallina, L.
    Colesanti, A.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 167 - 211
  • [7] Minkowski valuations and generalized valuations
    Schuster, Franz E.
    Wannerer, Thomas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (08) : 1851 - 1884
  • [8] Minkowski valuations
    Ludwig, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 4191 - 4213
  • [9] MINKOWSKI TYPE INEQUALITY FOR CONVEX FUNCTIONS
    Kvesic, Ljiljanka
    Pecaric, Josip
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 1191 - 1194
  • [10] A homogeneous decomposition theorem for valuations on convex functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (05)