Minkowski valuations on convex functions

被引:33
|
作者
Colesanti, Andrea [1 ]
Ludwig, Monika [2 ]
Mussnig, Fabian [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Vienna Univ Technol, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-1046, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
INVARIANT VALUATIONS;
D O I
10.1007/s00526-017-1243-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Aclassification of SL(n) contravariant Minkowski valuations on convex functions and a characterization of the projection body operator are established. The associated LYZ measure is characterized. In addition, a new SL(n) covariant Minkowski valuation on convex functions is defined and characterized.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Rotation equivariant Minkowski valuations
    Schneider, Rolf
    Schuster, Franz E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [22] A proof of the Minkowski inequalities based on convex homogeneous functions
    Karrila, Seppo
    Karrila, Taewee
    Karrila, Alex
    THAI JOURNAL OF MATHEMATICS, 2022, : 98 - 105
  • [23] Fixed points of Minkowski valuations
    Ortega-Moreno, Oscar
    Schuster, Franz E.
    ADVANCES IN MATHEMATICS, 2021, 392
  • [24] Convolution of convex valuations
    Bernig, Andreas
    Fu, Joseph H. G.
    GEOMETRIAE DEDICATA, 2006, 123 (01) : 153 - 169
  • [25] SL(n) Invariant Valuations on Super-Coercive Convex Functions
    Mussnig, Fabian
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (01): : 108 - 130
  • [26] Convolution of convex valuations
    Andreas Bernig
    Joseph H. G. Fu
    Geometriae Dedicata, 2006, 123 : 153 - 169
  • [27] GL(n) CONTRAVARIANT MINKOWSKI VALUATIONS
    Schuster, Franz E.
    Wannerer, Thomas
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (02) : 815 - 826
  • [28] MINKOWSKI VALUATIONS ON Lp-SPACES
    Tsang, Andy
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6159 - 6186
  • [29] Minkowski valuations under volume constraints
    Abardia-Evequoz, Judit
    Colesanti, Andrea
    Gomez, Eugenia Saorin
    ADVANCES IN MATHEMATICS, 2018, 333 : 118 - 158