List decoding of q-ary Reed-Muller codes

被引:44
|
作者
Pellikaan, R
Wu, XW
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Guruswami-Sudan algorithm; list decoding; order domain; q-ary Reed-Muller (RM) codes; subfield subcodes;
D O I
10.1109/TIT.2004.825043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The q-ary Reed-Muller (RM) codes RMq(u,m) of length n = q(m) are a generalization of Reed-Solomon (RS) codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for RM codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm in [1], it is applicable to codes RMq(u,m) with u < q/2 and works for up to E < n (1-root2u/q) errors. In this correspondence, following [6], we show that q-ary RM codes are subfield subcodes; of RS codes over F-qm. Then, using the list-decoding algorithm in [5] for RS codes over F,m, we present a list-decoding algorithm for q-ary RM codes. This algorithm is applicable to codes of any rates, and achieves an error-correction bound n(1-root(n-d)/n). The algorithm achieves a better error-correction bound than the algorithm in [15], since when u is small n (1-root/(n-d)/n) = n(1-1rootu/q) The implementation of the algorithm requires O (n) field operations in F-q and O(n(3)) field operations in F-qm under some assumption.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [41] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [42] Decoding Reed-Muller Codes over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    THEORY OF COMPUTING, 2017, 13
  • [43] Improved partial permutation decoding for Reed-Muller codes
    Key, J. D.
    McDonough, T. P.
    Mavron, V. C.
    DISCRETE MATHEMATICS, 2017, 340 (04) : 722 - 728
  • [44] On recursive decoding with sublinear complexity for Reed-Muller codes
    Dumer, I
    2003 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2003, : 14 - 17
  • [45] FAST CORRELATION DECODING OF REED-MULLER CODES.
    Karyakin, Yu.D.
    Problems of information transmission, 1987, 23 (02) : 121 - 129
  • [46] Decoding reed-muller codes over product sets
    Kim J.Y.
    Kopparty S.
    Theory of Computing, 2017, 13 : 1 - 38
  • [48] Distance Threshold Viterbi Decoding of Reed-Muller codes
    Magdy, Ahmed
    Mahran, Ashraf
    Abdel-Hamid, Gamal M.
    2019 15TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2019), 2019, : 12 - 16
  • [49] Decoding Reed-Muller Codes With Successive Codeword Permutations
    Doan, Nghia
    Hashemi, Seyyed Ali
    Mondelli, Marco
    Gross, Warren J. J.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (11) : 7134 - 7145
  • [50] Efficient decoding algorithms for generalized Reed-Muller codes
    Paterson, KG
    Jones, AE
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2000, 48 (08) : 1272 - 1285