List decoding of q-ary Reed-Muller codes

被引:44
|
作者
Pellikaan, R
Wu, XW
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Guruswami-Sudan algorithm; list decoding; order domain; q-ary Reed-Muller (RM) codes; subfield subcodes;
D O I
10.1109/TIT.2004.825043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The q-ary Reed-Muller (RM) codes RMq(u,m) of length n = q(m) are a generalization of Reed-Solomon (RS) codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for RM codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm in [1], it is applicable to codes RMq(u,m) with u < q/2 and works for up to E < n (1-root2u/q) errors. In this correspondence, following [6], we show that q-ary RM codes are subfield subcodes; of RS codes over F-qm. Then, using the list-decoding algorithm in [5] for RS codes over F,m, we present a list-decoding algorithm for q-ary RM codes. This algorithm is applicable to codes of any rates, and achieves an error-correction bound n(1-root(n-d)/n). The algorithm achieves a better error-correction bound than the algorithm in [15], since when u is small n (1-root/(n-d)/n) = n(1-1rootu/q) The implementation of the algorithm requires O (n) field operations in F-q and O(n(3)) field operations in F-qm under some assumption.
引用
收藏
页码:679 / 682
页数:4
相关论文
共 50 条
  • [31] On a decoding algorithm of mΘ Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 341 - 358
  • [32] Sequential decoding of binary Reed-Muller codes
    Stolte, N
    Sorger, U
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2000, 54 (06) : 412 - 420
  • [33] On polylogarithmic decoding complexity for Reed-Muller codes
    Dumer, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 326 - 326
  • [34] DECODING REED-MULLER CODES BY MULTILAYER PERCEPTRONS
    TSENG, YH
    WU, JL
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1993, 75 (04) : 589 - 594
  • [35] Improved list-decoding for Reed-Muller codes as generalized multiple concatenated (GMC) codes
    Lucas, R
    Bossert, M
    Dammann, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 337 - 337
  • [36] Dispersed Reed-Solomon codes for iterative decoding and construction of q-ary LDPC codes
    Zeng, LQ
    Lan, L
    Tai, YY
    Lin, S
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 1193 - 1198
  • [37] An improved list decoding algorithm for the second order Reed-Muller codes and its applications
    Fourquet, Rafael
    Tavernier, Cedric
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 323 - 340
  • [38] List decoding of Reed-Muller codes up to the Johnson bound with almost linear complexity
    Dumer, Ilya
    Kabatiansky, Grigory
    Tavernier, Cedric
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 138 - +
  • [39] Error exponents for recursive decoding of Reed-Muller codes
    Burnashev, Marat
    Dumer, Ilya
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 704 - +
  • [40] A New Permutation Decoding Method for Reed-Muller Codes
    Kamenev, Mikhail
    Kameneva, Yulia
    Kurmaev, Oleg
    Maevskiy, Alexey
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 26 - 30