An improved list decoding algorithm for the second order Reed-Muller codes and its applications

被引:22
|
作者
Fourquet, Rafael [1 ]
Tavernier, Cedric [2 ]
机构
[1] Univ Paris 8 St Denis MAATICAH, Dept Math, F-93526 St Denis, France
[2] THALES Commun, Colombes, France
关键词
list decoding; Reed-Muller codes; covering radius; Boolean functions; cryptography;
D O I
10.1007/s10623-008-9184-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an algorithm which is an improved version of the Kabatiansky-Tavernier list decoding algorithm for the second order Reed-Muller code RM(2, m), of length n = 2(m), and we analyse its theoretical and practical complexity. This improvement allows a better theoretical complexity. Moreover, we conjecture another complexity which corresponds to the results of our simulations. This algorithm has the strong property of being deterministic and this fact drives us to consider some applications, like determining some lower bounds concerning the covering radius of the RM(2, m) code.
引用
收藏
页码:323 / 340
页数:18
相关论文
共 50 条
  • [1] An improved list decoding algorithm for the second order Reed–Muller codes and its applications
    Rafaël Fourquet
    Cédric Tavernier
    Designs, Codes and Cryptography, 2008, 49 : 323 - 340
  • [2] Improved decoding of second-order Reed-Muller codes
    Ivanov, Kirill
    Urbanke, Ruediger
    2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 534 - 538
  • [3] List decoding of the first-order binary Reed-Muller codes
    Dumer, I. I.
    Kabatiansky, G. A.
    Tavernier, C.
    PROBLEMS OF INFORMATION TRANSMISSION, 2007, 43 (03) : 225 - 232
  • [4] List decoding of the first-order binary Reed-Muller codes
    I. I. Dumer
    G. A. Kabatiansky
    C. Tavernier
    Problems of Information Transmission, 2007, 43 : 225 - 232
  • [5] A root-finding algorithm for list decoding of Reed-Muller codes
    Wu, XW
    Kuijper, M
    Udaya, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 1190 - 1196
  • [6] Recursive list decoding for reed-muller codes and their subcodes
    Dumer, I
    Shabunov, K
    INFORMATION, CODING AND MATHEMATICS, 2002, 687 : 279 - 298
  • [7] Decoding of second order Reed-Muller codes with a large number of errors
    Sakkour, B
    Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 2005, : 176 - 178
  • [8] NEW DECODING ALGORITHM FOR REED-MULLER CODES
    TOKIWA, K
    SUGIMURA, T
    KASAHARA, M
    NAMEKAWA, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (05) : 779 - 787
  • [9] On a decoding algorithm of mΘ Reed-Muller codes
    Armand, Tsimi Jean
    Cedric, Pemha Binyam Gabriel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 341 - 358
  • [10] A decoding algorithm for the 1st order Reed-Muller codes
    Hahn, S
    Kim, DG
    Kim, YS
    UTILITAS MATHEMATICA, 1997, 51 : 9 - 20