An improved list decoding algorithm for the second order Reed-Muller codes and its applications

被引:22
|
作者
Fourquet, Rafael [1 ]
Tavernier, Cedric [2 ]
机构
[1] Univ Paris 8 St Denis MAATICAH, Dept Math, F-93526 St Denis, France
[2] THALES Commun, Colombes, France
关键词
list decoding; Reed-Muller codes; covering radius; Boolean functions; cryptography;
D O I
10.1007/s10623-008-9184-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an algorithm which is an improved version of the Kabatiansky-Tavernier list decoding algorithm for the second order Reed-Muller code RM(2, m), of length n = 2(m), and we analyse its theoretical and practical complexity. This improvement allows a better theoretical complexity. Moreover, we conjecture another complexity which corresponds to the results of our simulations. This algorithm has the strong property of being deterministic and this fact drives us to consider some applications, like determining some lower bounds concerning the covering radius of the RM(2, m) code.
引用
收藏
页码:323 / 340
页数:18
相关论文
共 50 条
  • [41] On the weight distribution of second order Reed-Muller codes and their relatives
    Li, Shuxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (10) : 2447 - 2460
  • [42] WEIGHT ENUMERATOR FOR SECOND-ORDER REED-MULLER CODES
    SLOANE, NJA
    BERLEKAMP, ER
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) : 745 - +
  • [43] Soft-decision decoding of Reed-Muller codes: A simplified algorithm
    Dumer, I
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) : 954 - 963
  • [44] List decoding of Reed-Muller codes up to the Johnson bound with almost linear complexity
    Dumer, Ilya
    Kabatiansky, Grigory
    Tavernier, Cedric
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 138 - +
  • [45] New advances in permutation decoding of first-order Reed-Muller codes
    Joaquin Bernal, Jose
    Jacobo Simon, Juan
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
  • [46] Simple MAP decoding of first-order Reed-Muller and hamming codes
    Ashikhmin, A
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1812 - 1818
  • [47] Error exponents for recursive decoding of Reed-Muller codes
    Burnashev, Marat
    Dumer, Ilya
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 704 - +
  • [48] A New Permutation Decoding Method for Reed-Muller Codes
    Kamenev, Mikhail
    Kameneva, Yulia
    Kurmaev, Oleg
    Maevskiy, Alexey
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 26 - 30
  • [49] On the second weight of generalized Reed-Muller codes
    Olav Geil
    Designs, Codes and Cryptography, 2008, 48 : 323 - 330
  • [50] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50