Hybrid passivated colloidal quantum dot solids

被引:1
|
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [41] Quantum efficiency of colloidal suspensions containing quantum dot/silica hybrid particles
    Jeon, Hyungjoon
    Yoon, Cheolsang
    Lee, Sooho
    Lee, Doh C.
    Shin, Kyusoon
    Lee, Kangtaek
    NANOTECHNOLOGY, 2016, 27 (43)
  • [42] Quantum efficiency enhancement optimization in colloidal semiconductor quantum dot solids using nonradiative energy transfer
    Nizamoglu, Sedat
    Akin, Onur
    Demir, Hilmi Volkan
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [43] Development and study of hybrid organic-colloidal quantum dot systems
    Bourdakos, Konstantinos N.
    Dissanayake, D. M. Nanditha
    Curry, Richard J.
    ORGANIC PHOTONIC MATERIALS AND DEVICES IX, 2007, 6470
  • [44] Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
    Zhitomirsky, David
    Voznyy, Oleksandr
    Levina, Larissa
    Hoogland, Sjoerd
    Kemp, Kyle W.
    Ip, Alexander H.
    Thon, Susanna M.
    Sargent, Edward H.
    NATURE COMMUNICATIONS, 2014, 5
  • [45] Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
    David Zhitomirsky
    Oleksandr Voznyy
    Larissa Levina
    Sjoerd Hoogland
    Kyle W. Kemp
    Alexander H. Ip
    Susanna M. Thon
    Edward H. Sargent
    Nature Communications, 5
  • [46] Optical gain engineering in colloidal quantum dot solids toward continuous wave lasing
    Fan, Fengjia
    Adachi, Michael
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Sargent, Edward
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [47] Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids
    Proppe, Andrew H.
    Xu, Jixian
    Sabatini, Randy P.
    Fan, James Z.
    Sun, Bin
    Hoogland, Sjoerd
    Kelley, Shana O.
    Voznyy, Oleksandr
    Sargent, Edward H.
    NANO LETTERS, 2018, 18 (11) : 7052 - 7059
  • [48] Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation
    Carey, Graham H.
    Levina, Larissa
    Comin, Riccardo
    Voznyy, Oleksandr
    Sargent, Edward H.
    ADVANCED MATERIALS, 2015, 27 (21) : 3325 - 3330
  • [49] Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids
    Jo, Jea Woong
    Choi, Jongmin
    de Arquer, F. Pelayo Garcia
    Seifitokaldani, Ali
    Sun, Bin
    Kim, Younghoon
    Ahn, Hyungju
    Fan, James
    Quintero-Bermudez, Rafael
    Kim, Junghwan
    Choi, Min-Jae
    Baek, Se-Woong
    Proppe, Andrew H.
    Walters, Grant
    Nam, Dae-Hyun
    Kelley, Shana
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Sargent, Edward H.
    NANO LETTERS, 2018, 18 (07) : 4417 - 4423
  • [50] Molecular Ligands Control Superlattice Structure and Crystallite Orientation in Colloidal Quantum Dot Solids
    Santra, Pralay K.
    Palmstrom, Axel F.
    Tassone, Christopher J.
    Bent, Stacey F.
    CHEMISTRY OF MATERIALS, 2016, 28 (19) : 7072 - 7081