Hybrid passivated colloidal quantum dot solids

被引:1
|
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [21] Colloidal quantum dot solids for solution-processed solar cells
    Yuan, Mingjian
    Liu, Mengxia
    Sargent, Edward H.
    NATURE ENERGY, 2016, 1
  • [22] Surface band bending and carrier dynamics in colloidal quantum dot solids
    Clark, Pip C. J.
    Lewis, Nathan K.
    Ke, Jack Chun-Ren
    Ahumada-Lazo, Ruben
    Chen, Qian
    Neo, Darren C. J.
    Gaulding, E. Ashley
    Pach, Gregory F.
    Pis, Igor
    Silly, Mathieu G.
    Flavell, Wendy R.
    NANOSCALE, 2021, 13 (42) : 17793 - 17806
  • [23] Mid-infrared response of PbS colloidal quantum dot solids
    He, Jungang
    Zhou, Xianchang
    Wang, Ya
    Yuan, Mohan
    Xia, Hang
    Chen, Xiao
    Ge, You
    Wang, Xia
    Gao, Liang
    Tang, Jiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (29) : 10033 - 10042
  • [24] The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids
    P. Papagiorgis
    A. Stavrinadis
    A. Othonos
    G. Konstantatos
    G. Itskos
    Scientific Reports, 6
  • [25] N-Type Colloidal-Quantum-Dot Solids for Photovoltaics
    Zhitomirsky, David
    Furukawa, Melissa
    Tang, Jiang
    Stadler, Philipp
    Hoogland, Sjoerd
    Voznyy, Oleksandr
    Liu, Huan
    Sargent, Edward H.
    ADVANCED MATERIALS, 2012, 24 (46) : 6181 - 6185
  • [26] The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids
    Papagiorgis, P.
    Stavrinadis, A.
    Othonos, A.
    Konstantatos, G.
    Itskos, G.
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Colloidal quantum dot solids for solution-processed solar cells
    Mingjian Yuan
    Mengxia Liu
    Edward H. Sargent
    Nature Energy, 1 (3)
  • [28] Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids
    Zhitomirsky, David
    Voznyy, Oleksandr
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2013, 7 (06) : 5282 - 5290
  • [29] Conformal Fabrication of Colloidal Quantum Dot Solids for Optically Enhanced Photovoltaics
    Labelle, Andre J.
    Thon, Susanna M.
    Kim, Jin Young
    Lan, Xinzheng
    Zhitomirsky, David
    Kemp, Kyle W.
    Sargent, Edward H.
    ACS NANO, 2015, 9 (05) : 5447 - 5453
  • [30] Joint Mapping of Mobility and Trap Density in Colloidal Quantum Dot Solids
    Stadler, Philipp
    Sutherland, Brandon R.
    Ren, Yuan
    Ning, Zhijun
    Simchi, Arash
    Thon, Susanna M.
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2013, 7 (07) : 5757 - 5762