Hybrid passivated colloidal quantum dot solids

被引:1
|
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [31] Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids
    Chen, Wei
    Zhong, Jialin
    Li, Junzi
    Saxena, Nitin
    Kreuzer, Lucas P.
    Liu, Haochen
    Song, Lin
    Su, Bo
    Yang, Dan
    Wang, Kun
    Schlipf, Johannes
    Koerstgens, Volker
    He, Tingchao
    Wang, Kai
    Mueller-Buschbaum, Peter
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (09): : 2058 - 2065
  • [32] Microsecond-sustained lasing from colloidal quantum dot solids
    Michael M. Adachi
    Fengjia Fan
    Daniel P. Sellan
    Sjoerd Hoogland
    Oleksandr Voznyy
    Arjan J. Houtepen
    Kevin D. Parrish
    Pongsakorn Kanjanaboos
    Jonathan A. Malen
    Edward H. Sargent
    Nature Communications, 6
  • [33] Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells
    Yassitepe, Emre
    Voznyy, Oleksandr
    Sargent, Edward
    Nogueira, Ana Flavia F.
    NEXT GENERATION TECHNOLOGIES FOR SOLAR ENERGY CONVERSION VI, 2015, 9562
  • [34] A Charge-Orbital Balance Picture of Doping in Colloidal Quantum Dot Solids
    Voznyy, Oleksandr
    Zhitomirsky, David
    Stadler, Philipp
    Ning, Zhijun
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2012, 6 (09) : 8448 - 8455
  • [35] Air-stable n-type colloidal quantum dot solids
    Ning, Zhijun
    Voznyy, Oleksandr
    Pan, Jun
    Hoogland, Sjoerd
    Adinolfi, Valerio
    Xu, Jixian
    Li, Min
    Kirmani, Ahmad R.
    Sun, Jon-Paul
    Minor, James
    Kemp, Kyle W.
    Dong, Haopeng
    Rollny, Lisa
    Labelle, Andre
    Carey, Graham
    Sutherland, Brandon
    Hill, Ian G.
    Amassian, Aram
    Liu, Huan
    Tang, Jiang
    Bakr, Osman M.
    Sargent, Edward H.
    NATURE MATERIALS, 2014, 13 (08) : 822 - 828
  • [36] SOLAR CELLS BASED ON COLLOIDAL QUANTUM DOT SOLIDS: SEEKING ENHANCED PHOTOCURRENT
    Law, Matt
    Luther, Joseph M.
    Beard, Matthew C.
    Choi, Sukgeun
    Nozik, Arthur J.
    2009 34TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-3, 2009, : 2280 - 2285
  • [37] Facet Control for Trap-State Suppression in Colloidal Quantum Dot Solids
    Xia, Yong
    Chen, Wei
    Zhang, Peng
    Liu, Sisi
    Wang, Kang
    Yang, Xiaokun
    Tang, Haodong
    Lian, Linyuan
    He, Jungang
    Liu, Xinxing
    Liang, Guijie
    Tan, Manlin
    Gao, Liang
    Liu, Huan
    Song, Haisheng
    Zhang, Daoli
    Gao, Jianbo
    Wang, Kai
    Lan, Xinzheng
    Zhang, Xiuwen
    Mueller-Buschbaum, Peter
    Tang, Jiang
    Zhang, Jianbing
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (22)
  • [38] Perspective: Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids
    Lee, Elizabeth M. Y.
    Tisdale, William A.
    Willard, Adam P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (06):
  • [39] Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids
    Carey, Graham H.
    Yuan, Mingjian
    Comin, Riccardo
    Voznyy, Oleksandr
    Sargent, Edward H.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (39) : 21995 - 22000
  • [40] Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors
    Yang, Ji
    Hu, Huicheng
    Lv, Yifei
    Yuan, Mohan
    Wang, Binbin
    He, Ziyang
    Chen, Shiwu
    Wang, Ya
    Hu, Zhixiang
    Yu, Mengxuan
    Zhang, Xingchen
    He, Jungang
    Zhang, Jianbing
    Liu, Huan
    Hsu, Hsien-Yi
    Tang, Jiang
    Song, Haisheng
    Lan, Xinzheng
    NANO LETTERS, 2022, 22 (08) : 3465 - 3472