Hybrid passivated colloidal quantum dot solids

被引:1
|
作者
Ip, Alexander H. [1 ]
Thon, Susanna M. [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Zhitomirsky, David [1 ]
Debnath, Ratan [1 ]
Levina, Larissa [1 ]
Rollny, Lisa R. [1 ]
Carey, Graham H. [1 ]
Fischer, Armin [1 ]
Kemp, Kyle W. [1 ]
Kramer, Illan J. [1 ]
Ning, Zhijun [1 ]
Labelle, Andre J. [1 ]
Chou, Kang Wei [2 ]
Amassian, Aram [2 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
加拿大自然科学与工程研究理事会;
关键词
SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; NANOCRYSTAL FILMS; CDSE NANOCRYSTALS; PHOTOVOLTAICS; RECOMBINATION; EFFICIENCY; STABILITY; LIGANDS; LAYER;
D O I
10.1038/NNANO.2012.127
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect(1-6). However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance(7). Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions(8-12), leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states(13,14). Furthermore, the solution-based approach leverages recent progress in metal: chalcogen chemistry in the liquid phase(15-19). Here, we quantify the density of midgap trap states(20-22) in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [1] Hybrid passivated colloidal quantum dot solids
    Alexander H. Ip
    Susanna M. Thon
    Sjoerd Hoogland
    Oleksandr Voznyy
    David Zhitomirsky
    Ratan Debnath
    Larissa Levina
    Lisa R. Rollny
    Graham H. Carey
    Armin Fischer
    Kyle W. Kemp
    Illan J. Kramer
    Zhijun Ning
    André J. Labelle
    Kang Wei Chou
    Aram Amassian
    Edward H. Sargent
    Nature Nanotechnology, 2012, 7 (9) : 577 - 582
  • [2] Impact Dynamics of Colloidal Quantum Dot Solids
    Qi, Lejun
    McMurry, Peter H.
    Norris, David J.
    Girshick, Steven L.
    LANGMUIR, 2011, 27 (20) : 12677 - 12683
  • [3] Colloidal quantum dot solids: Models and designs
    Voznyy, Oleksandr
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [4] Micron Thick Colloidal Quantum Dot Solids
    Fan, James Z.
    Vafaie, Maral
    Bertens, Koen
    Sytnyk, Mykhailo
    Pina, Joao M.
    Sagar, Laxmi Kishore
    Ouellette, Olivier
    Proppe, Andrew H.
    Rasouli, Armin Sedighian
    Gao, Yajun
    Baek, Se-Woong
    Chen, Bin
    Laquai, Frederic
    Hoogland, Sjoerd
    de Arquer, F. Pelayo Garica
    Heiss, Wolfgang
    Sargent, Edward H.
    NANO LETTERS, 2020, 20 (07) : 5284 - 5291
  • [5] Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics
    Liu, Sisi
    Xiong, Kao
    Wang, Kang
    Liang, Guijie
    Li, Ming-Yu
    Tang, Haodong
    Yang, Xiaokun
    Huang, Zhen
    Lian, Linyuan
    Tan, Manlin
    Wang, Kai
    Gao, Liang
    Song, Haisheng
    Zhang, Daoli
    Gao, Jianbo
    Lan, Xinzheng
    Tang, Jiang
    Zhang, Jianbing
    ACS NANO, 2021, 15 (02) : 3376 - 3386
  • [6] Colloidal nanocrystal quantum dot assemblies as artificial solids
    Hanrath, Tobias
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (03):
  • [7] Magnitude of the Forster Radius in Colloidal Quantum Dot Solids
    Mork, A. Jolene
    Weidman, Mark C.
    Prins, Ferry
    Tisdale, William A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (25): : 13920 - 13928
  • [8] Electronically Active Impurities in Colloidal Quantum Dot Solids
    Carey, Graham H.
    Kramer, Illan J.
    Kanjanaboos, Pongsakorn
    Moreno-Bautista, Gabriel
    Voznyy, Oleksandr
    Rollny, Lisa
    Tang, Joel A.
    Hoogland, Sjoerd
    Sargent, Edward H.
    ACS NANO, 2014, 8 (11) : 11763 - 11769
  • [9] Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
    Liu, Mengxia
    Voznyy, Oleksandr
    Sabatini, Randy
    de Arquer, F. Pelayo Garcia
    Munir, Rahim
    Balawi, Ahmed Hesham
    Lan, Xinzheng
    Fan, Fengjia
    Walters, Grant
    Kirmani, Ahmad R.
    Hoogland, Sjoerd
    Laquai, Frederic
    Amassian, Aram
    Sargent, Edward H.
    NATURE MATERIALS, 2017, 16 (02) : 258 - 263
  • [10] Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids
    Liu M.
    Voznyy O.
    Sabatini R.
    García De Arquer F.P.
    Munir R.
    Balawi A.H.
    Lan X.
    Fan F.
    Walters G.
    Kirmani A.R.
    Hoogland S.
    Laquai F.
    Amassian A.
    Sargent E.H.
    Nature Materials, 2017, 16 (2) : 258 - 263