Actuation response model from sparse data for wall turbulence drag reduction

被引:19
|
作者
Fernex, Daniel [1 ]
Semaan, Richard [1 ]
Albers, Marian [2 ]
Meysonnat, Pascal S. [2 ]
Schroeder, Wolfgang [2 ,3 ]
Noack, Bernd R. [1 ,4 ,5 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Stromungsmech, Hermann Blenk Str 37, D-38108 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany
[3] Forschungszentrum Julich, JARA High Performance Comp, D-52425 Julich, Germany
[4] Tech Univ Berlin, Inst Stromungsmech & Tech Akust ISTA, Muller Breslau Str 8, D-10623 Berlin, Germany
[5] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen 58800, Peoples R China
来源
PHYSICAL REVIEW FLUIDS | 2020年 / 5卷 / 07期
关键词
SUPPORT VECTOR REGRESSION; DESIGN; OPTIMIZATION;
D O I
10.1103/PhysRevFluids.5.073901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute, model, and predict drag reduction of an actuated turbulent boundary layer at a momentum-thickness-based Reynolds number of Re-theta = 1000. The actuation is performed using spanwise traveling transversal surface waves parametrized by wavelength, amplitude, and period. The drag reduction for the set of actuation parameters is modeled using 71 large-eddy simulations (LESs). This drag model allows us to extrapolate outside the actuation domain for larger wavelengths and amplitudes. The modeling novelty is based on combining support vector regression for interpolation, a parametrized ridgeline leading out of the data domain, a scaling for the drag reduction, and a discovered self-similar structure of the actuation effect. The model yields high prediction accuracy outside the training data range.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Experimental investigation on wall-bounded turbulence drag reduction by double piezoelectric vibrator active control
    Bai, Jian-xia
    Huang, Yong-xiang
    Jiang, Nan
    Ma, Xing-yu
    Tang, Zhan-qi
    JOURNAL OF HYDRODYNAMICS, 2020, 32 (04) : 747 - 757
  • [42] Experimental investigation of wall-bounded turbulence drag reduction by active control of double piezoelectric vibrator
    Jian-xia Bai
    Yong-xiang Huang
    Nan Jiang
    Xing-yu Ma
    Zhan-qi Tang
    Journal of Hydrodynamics, 2020, 32 : 747 - 757
  • [43] Lossy Data Compression Effects on Wall-bounded Turbulence: Bounds on Data Reduction
    Otero, Evelyn
    Vinuesa, Ricardo
    Marin, Oana
    Laure, Erwin
    Schlatter, Philipp
    FLOW TURBULENCE AND COMBUSTION, 2018, 101 (02) : 365 - 387
  • [44] Lossy Data Compression Effects on Wall-bounded Turbulence: Bounds on Data Reduction
    Evelyn Otero
    Ricardo Vinuesa
    Oana Marin
    Erwin Laure
    Philipp Schlatter
    Flow, Turbulence and Combustion, 2018, 101 : 365 - 387
  • [45] CALCULATION OF LIFT AND INDUCED DRAG FROM SPARSE SPAN LOADING DATA
    LUNDRY, JL
    JOURNAL OF AIRCRAFT, 1977, 14 (03): : 309 - 311
  • [46] Drag reduction from fences on a square prism near plane wall
    Ro, Ki-Deok
    Zhu, Baoshan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (12) : 3063 - 3068
  • [47] Drag reduction of turbulent channel flow by polymer release from wall
    Koshi, M.
    Iwamoto, K.
    Murata, A.
    Kawaguchi, Y.
    Ando, H.
    Senda, T.
    TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 951 - 954
  • [48] Drag Reduction with Blowing Polymer Solution from Whole Surface of the Wall
    Kawaguchi, Yasuo
    Motozawa, Masaaki
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (07) : 453 - 458
  • [49] Drag reduction with blowing polymer solution from whole surface of the wall
    Kawaguchi, Yasuo
    Motozawa, Masaaki
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2010, 55 (07): : 453 - 458
  • [50] A sparse optimal closure for a reduced-order model of wall-bounded turbulence
    Khoo, Zhao Chua
    Chan, Chi Hin
    Hwang, Yongyun
    JOURNAL OF FLUID MECHANICS, 2022, 939