Actuation response model from sparse data for wall turbulence drag reduction

被引:19
|
作者
Fernex, Daniel [1 ]
Semaan, Richard [1 ]
Albers, Marian [2 ]
Meysonnat, Pascal S. [2 ]
Schroeder, Wolfgang [2 ,3 ]
Noack, Bernd R. [1 ,4 ,5 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Stromungsmech, Hermann Blenk Str 37, D-38108 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany
[3] Forschungszentrum Julich, JARA High Performance Comp, D-52425 Julich, Germany
[4] Tech Univ Berlin, Inst Stromungsmech & Tech Akust ISTA, Muller Breslau Str 8, D-10623 Berlin, Germany
[5] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen 58800, Peoples R China
来源
PHYSICAL REVIEW FLUIDS | 2020年 / 5卷 / 07期
关键词
SUPPORT VECTOR REGRESSION; DESIGN; OPTIMIZATION;
D O I
10.1103/PhysRevFluids.5.073901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute, model, and predict drag reduction of an actuated turbulent boundary layer at a momentum-thickness-based Reynolds number of Re-theta = 1000. The actuation is performed using spanwise traveling transversal surface waves parametrized by wavelength, amplitude, and period. The drag reduction for the set of actuation parameters is modeled using 71 large-eddy simulations (LESs). This drag model allows us to extrapolate outside the actuation domain for larger wavelengths and amplitudes. The modeling novelty is based on combining support vector regression for interpolation, a parametrized ridgeline leading out of the data domain, a scaling for the drag reduction, and a discovered self-similar structure of the actuation effect. The model yields high prediction accuracy outside the training data range.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV
    Guan, Xin-Lei
    Yao, Shi-Yong
    Jiang, Nan
    ACTA MECHANICA SINICA, 2013, 29 (04) : 485 - 493
  • [32] Friction-drag reduction effect in wall turbulence with fluorescently-labeled polymer
    Atsumi, T.
    Mamori, H.
    Iwamoto, K.
    Murata, A.
    Ando, H.
    Masuda, M.
    Wada, M.
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TURBULENCE HEAT AND MASS TRANSFER (THMT-15), 2015, : 735 - 738
  • [33] The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion
    Agostini, L.
    Touber, E.
    Leschziner, M. A.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2015, 51 : 3 - 15
  • [34] A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV
    Xin-Lei Guan
    Shi-Yong Yao
    Nan Jiang
    Acta Mechanica Sinica, 2013, 29 (04) : 485 - 493
  • [35] A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV
    Xin-Lei Guan
    Shi-Yong Yao
    Nan Jiang
    Acta Mechanica Sinica, 2013, 29 : 485 - 493
  • [36] Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information
    Ge, Mingwei
    Xu, Chunxiao
    Cui, Gui-Xiang
    ACTA MECHANICA SINICA, 2015, 31 (04) : 512 - 522
  • [37] Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information
    Mingwei Ge
    Chunxiao Xu
    Gui-Xiang Cui
    Acta Mechanica Sinica, 2015, 31 : 512 - 522
  • [38] Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds numbers
    Iwamoto, K
    Fukagata, K
    Kasagi, N
    Suzuki, Y
    PHYSICS OF FLUIDS, 2005, 17 (01) : 011702 - 011702
  • [39] Scramjet drag reduction from porous wall injection of hydrogen
    van Staden, Paul A.
    Brown, Melrose L.
    Boyce, Russell R.
    23rd AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2020, 2020,
  • [40] Mechanism of drag reduction by pre-determined spatio-temporally periodic control of wall turbulence
    Yakeno A.
    Hasegawa Y.
    Kasagi N.
    Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2010, 76 (764): : 555 - 562