Actuation response model from sparse data for wall turbulence drag reduction

被引:19
|
作者
Fernex, Daniel [1 ]
Semaan, Richard [1 ]
Albers, Marian [2 ]
Meysonnat, Pascal S. [2 ]
Schroeder, Wolfgang [2 ,3 ]
Noack, Bernd R. [1 ,4 ,5 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Stromungsmech, Hermann Blenk Str 37, D-38108 Braunschweig, Germany
[2] Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany
[3] Forschungszentrum Julich, JARA High Performance Comp, D-52425 Julich, Germany
[4] Tech Univ Berlin, Inst Stromungsmech & Tech Akust ISTA, Muller Breslau Str 8, D-10623 Berlin, Germany
[5] Harbin Inst Technol, Inst Turbulence Noise Vibrat Interact & Control, Shenzhen 58800, Peoples R China
来源
PHYSICAL REVIEW FLUIDS | 2020年 / 5卷 / 07期
关键词
SUPPORT VECTOR REGRESSION; DESIGN; OPTIMIZATION;
D O I
10.1103/PhysRevFluids.5.073901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute, model, and predict drag reduction of an actuated turbulent boundary layer at a momentum-thickness-based Reynolds number of Re-theta = 1000. The actuation is performed using spanwise traveling transversal surface waves parametrized by wavelength, amplitude, and period. The drag reduction for the set of actuation parameters is modeled using 71 large-eddy simulations (LESs). This drag model allows us to extrapolate outside the actuation domain for larger wavelengths and amplitudes. The modeling novelty is based on combining support vector regression for interpolation, a parametrized ridgeline leading out of the data domain, a scaling for the drag reduction, and a discovered self-similar structure of the actuation effect. The model yields high prediction accuracy outside the training data range.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Identification and calculation of the universal asymptote for drag reduction by polymers in wall bounded turbulence
    Benzi, R
    De Angelis, E
    L'vov, VS
    Procaccia, I
    PHYSICAL REVIEW LETTERS, 2005, 95 (19)
  • [22] Effect of Microbubble Gas Saturation on Near-Wall Turbulence and Drag Reduction
    A. R. Evseev
    L. I. Mal’tsev
    Journal of Engineering Thermophysics, 2018, 27 : 155 - 172
  • [23] Effects of spatially varying slip length on friction drag reduction in wall turbulence
    Hasegawa, Yosuke
    Frohnapfel, Bettina
    Kasagi, Nobuhide
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): WALL-BOUNDED FLOWS AND CONTROL OF TURBULENCE, 2011, 318
  • [24] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
    Bai, Jian-Xia
    Jiang, Nan
    Zheng, Xiao-Bo
    Tang, Zhan-Qi
    Wang, Kang-Jun
    Cui, Xiao-Tong
    CHINESE PHYSICS B, 2018, 27 (07)
  • [25] Solutions of Polymers under the Conditions of Wall Turbulence. Mechanism of Drag Reduction
    Pogrebnyak, V.G.
    Pisarenko, A.A.
    International Journal of Fluid Mechanics Research, 2003, 29 (06) : 779 - 797
  • [26] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
    白建侠
    姜楠
    郑小波
    唐湛琪
    王康俊
    崔晓通
    ChinesePhysicsB, 2018, 27 (07) : 402 - 408
  • [27] The influence of wall roughness on bubble drag reduction in Taylor-Couette turbulence
    Verschoof, Ruben A.
    Bakhuis, Dennis
    Bullee, Pim A.
    Huisman, Sander G.
    Sun, Chao
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2018, 851 : 436 - 446
  • [28] Drag reduction in wall-bounded turbulence via a transverse travelling wave
    Du, YQ
    Symeonidis, V
    Karniadakis, GE
    JOURNAL OF FLUID MECHANICS, 2002, 457 : 1 - 34
  • [29] Shell model for drag reduction with polymer additives in homogeneous turbulence
    Benzi, R
    De Angelis, E
    Govindarajan, R
    Procaccia, I
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [30] Toward Cost-effective Control of Wall Turbulence for Skin Friction Drag Reduction
    Kasagi, Nobuhide
    Hasegawa, Yosuke
    Fukagata, Koji
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 189 - 200