Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima

被引:0
|
作者
Yu, Yaodong [1 ]
Xu, Pan [2 ]
Gu, Quanquan [2 ]
机构
[1] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose stochastic optimization algorithms that can find local minima faster than existing algorithms for nonconvex optimization problems, by exploiting the third-order smoothness to escape non-degenerate saddle points more efficiently. More specifically, the proposed algorithm only needs ((O) over tilde(epsilon(-10)(/3)) stochastic gradient evaluations to converge to an approximate local minimum x, which satisfies parallel to del f (x)parallel to(2) <= epsilon and lambda(min) (del(2) f (x)) >= - root epsilon in unconstrained stochastic optimization, where (O) over tilde(.) hides logarithm polynomial terms and constants. This improves upon the (O) over tilde(epsilon(-7/2)) gradient complexity achieved by the state-of-the-art stochastic local minima finding algorithms by a factor of (O) over tilde(epsilon(-1/6)). Experiments on two nonconvex optimization problems demonstrate the effectiveness of our algorithm and corroborate our theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On Local Convergence of Stochastic Global Optimization Algorithms
    Hendrix, Eligius M. T.
    Rocha, Ana Maria A. C.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT V, 2021, 12953 : 456 - 472
  • [42] On the use of third-order models with fourth-order regularization for unconstrained optimization
    E. G. Birgin
    J. L. Gardenghi
    J. M. Martínez
    S. A. Santos
    Optimization Letters, 2020, 14 : 815 - 838
  • [43] On the use of third-order models with fourth-order regularization for unconstrained optimization
    Birgin, E. G.
    Gardenghi, J. L.
    Martinez, J. M.
    Santos, S. A.
    OPTIMIZATION LETTERS, 2020, 14 (04) : 815 - 838
  • [44] Finding new local minima by switching merit functions in optical system optimization
    Serebriakov, A
    Bociort, F
    Braat, J
    OPTICAL ENGINEERING, 2005, 44 (10)
  • [45] ON AN ALGORITHM OF FINDING AN APPROXIMATE SOLUTION OF A PERIODIC PROBLEM FOR A THIRD-ORDER DIFFERENTIAL EQUATION
    Orumbayeva, N. T.
    Assanova, A. T.
    Keldibekova, A. B.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (01): : 69 - 85
  • [46] Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
    Chen, Lesi
    Xu, Jing
    Luo, Luo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [47] Optimization and dynamical systems algorithms for finding equilibria of stochastic games
    Sen, Arun
    Shanno, David F.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (06): : 975 - 993
  • [48] LOCAL MINIMA ESCAPE TRANSIENTS BY STOCHASTIC GRADIENT DESCENT ALGORITHMS IN BLIND ADAPTIVE EQUALIZERS
    FRATER, MR
    BITMEAD, RR
    JOHNSON, CR
    AUTOMATICA, 1995, 31 (04) : 637 - 641
  • [49] NEON2: Finding Local Minima via First-Order Oracles
    Allen-Zhu, Zeyuan
    Li, Yuanzhi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [50] Third-order differential equations and local isometric immersions of pseudospherical surfaces
    Silva, Tarcisio Castro
    Kamran, Niky
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (06)