Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima

被引:0
|
作者
Yu, Yaodong [1 ]
Xu, Pan [2 ]
Gu, Quanquan [2 ]
机构
[1] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose stochastic optimization algorithms that can find local minima faster than existing algorithms for nonconvex optimization problems, by exploiting the third-order smoothness to escape non-degenerate saddle points more efficiently. More specifically, the proposed algorithm only needs ((O) over tilde(epsilon(-10)(/3)) stochastic gradient evaluations to converge to an approximate local minimum x, which satisfies parallel to del f (x)parallel to(2) <= epsilon and lambda(min) (del(2) f (x)) >= - root epsilon in unconstrained stochastic optimization, where (O) over tilde(.) hides logarithm polynomial terms and constants. This improves upon the (O) over tilde(epsilon(-7/2)) gradient complexity achieved by the state-of-the-art stochastic local minima finding algorithms by a factor of (O) over tilde(epsilon(-1/6)). Experiments on two nonconvex optimization problems demonstrate the effectiveness of our algorithm and corroborate our theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimized third-order force-gradient symplectic algorithms
    Li Rong
    Wu Xin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 (09) : 1600 - 1609
  • [22] Optimization of a third-order gradiometer for operation in unshielded environments
    Uzunbajakau, SA
    Rijpma, AP
    ter Brake, HJM
    Peters, MJ
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (03) : 3879 - 3885
  • [23] Optimization of Dynamic Properties of Third-Order Converters.
    Nawrocki, Zdzislaw
    Rozprawy Elektrotechniczne, 1980, 26 (01): : 83 - 99
  • [24] Portfolio selection problem with the third-order stochastic dominance constraints
    Kopa, Milos
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 436 - 441
  • [25] Approximate controllability of stochastic nonlinear third-order dispersion equation
    Muthukumar, P.
    Rajivganthi, C.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (03) : 585 - 594
  • [26] ADAPTIVE THIRD-ORDER METHODS FOR COMPOSITE CONVEX OPTIMIZATION
    Grapiglia, G. N.
    Nesterov, Yu.
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 1855 - 1883
  • [27] Optimized third-order force-gradient symplectic algorithms
    Rong Li
    Xin Wu
    Science China Physics, Mechanics and Astronomy, 2010, 53 : 1600 - 1609
  • [28] Fast optimization procedures for third-order dispersion management
    Posth, JA
    Schäfer, T
    Laedke, EW
    Spatschek, KH
    OPTICS COMMUNICATIONS, 2003, 219 (1-6) : 241 - 249
  • [29] New families of nonlinear third-order solvers for finding multiple roots
    Chun, Changbum
    Bae, Hwa ju
    Neta, Beny
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (09) : 1574 - 1582
  • [30] New Families of Third-Order Iterative Methods for Finding Multiple Roots
    Lin, R. F.
    Ren, H. M.
    Smarda, Z.
    Wu, Q. B.
    Khan, Y.
    Hu, J. L.
    JOURNAL OF APPLIED MATHEMATICS, 2014,