Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima

被引:0
|
作者
Yu, Yaodong [1 ]
Xu, Pan [2 ]
Gu, Quanquan [2 ]
机构
[1] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose stochastic optimization algorithms that can find local minima faster than existing algorithms for nonconvex optimization problems, by exploiting the third-order smoothness to escape non-degenerate saddle points more efficiently. More specifically, the proposed algorithm only needs ((O) over tilde(epsilon(-10)(/3)) stochastic gradient evaluations to converge to an approximate local minimum x, which satisfies parallel to del f (x)parallel to(2) <= epsilon and lambda(min) (del(2) f (x)) >= - root epsilon in unconstrained stochastic optimization, where (O) over tilde(.) hides logarithm polynomial terms and constants. This improves upon the (O) over tilde(epsilon(-7/2)) gradient complexity achieved by the state-of-the-art stochastic local minima finding algorithms by a factor of (O) over tilde(epsilon(-1/6)). Experiments on two nonconvex optimization problems demonstrate the effectiveness of our algorithm and corroborate our theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence
    Xu, Yi
    Lin, Qihang
    Yang, Tianbao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [32] An effective third-order local fitting patch and its application
    Li, Zhong
    Barsky, Brian
    Jin, Xiaogang
    SMI 2009: IEEE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2009, : 7 - +
  • [33] On the local convergence of a third-order iterative scheme in Banach spaces
    Debasis Sharma
    Sanjaya Kumar Parhi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 311 - 325
  • [34] Inverse scattering problem for a third-order operator with local potential
    Zolotarev, V. A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 379 : 207 - 257
  • [35] On the local convergence of a third-order iterative scheme in Banach spaces
    Sharma, Debasis
    Parhi, Sanjaya Kumar
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 311 - 325
  • [36] On uniform Lebesgue constants of third-order local trigonometric splines
    Strelkova, E., V
    Shevaldin, V. T.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 245 - 254
  • [37] Third-order local power properties of tests for a composite hypothesis
    Kakizawa, Yoshihide
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 303 - 317
  • [38] Second- and third-order multivariate calibration:: Data, algorithms and applications
    Escandar, Graciela M.
    Faber, Nicholaas M.
    Goicoechea, Hector C.
    Munoz de la Pena, Arsenio
    Olivieri, Alejandro C.
    Poppi, Ronei J.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2007, 26 (07) : 752 - 765
  • [39] A third-order weak approximation of multidimensional Ito stochastic differential equations
    Naito, Riu
    Yamada, Toshihiro
    MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (02): : 97 - 120
  • [40] Third-order Continuous-Discrete Filtering For a Stochastic Duffing System
    Patel, Hiren G.
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 181 - 186