Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima

被引:0
|
作者
Yu, Yaodong [1 ]
Xu, Pan [2 ]
Gu, Quanquan [2 ]
机构
[1] Univ Virginia, Dept Comp Sci, Charlottesville, VA 22904 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose stochastic optimization algorithms that can find local minima faster than existing algorithms for nonconvex optimization problems, by exploiting the third-order smoothness to escape non-degenerate saddle points more efficiently. More specifically, the proposed algorithm only needs ((O) over tilde(epsilon(-10)(/3)) stochastic gradient evaluations to converge to an approximate local minimum x, which satisfies parallel to del f (x)parallel to(2) <= epsilon and lambda(min) (del(2) f (x)) >= - root epsilon in unconstrained stochastic optimization, where (O) over tilde(.) hides logarithm polynomial terms and constants. This improves upon the (O) over tilde(epsilon(-7/2)) gradient complexity achieved by the state-of-the-art stochastic local minima finding algorithms by a factor of (O) over tilde(epsilon(-1/6)). Experiments on two nonconvex optimization problems demonstrate the effectiveness of our algorithm and corroborate our theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
    Chen, Zixiang
    Zhou, Dongruo
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 167, 2022, 167
  • [2] Novel local smoothness indicators for improving the third-order WENO scheme
    Liu, Shengping
    Shen, Yiqing
    Chen, Bei
    Zeng, Fangjun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 87 (02) : 51 - 69
  • [3] On Smoothness Property of Third-order Differential Operator
    Ospanov, Kordan N.
    Yeskabylova, Zhuldyz B.
    INTERNATIONAL CONFERENCE FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS (FAIA2017), 2017, 1880
  • [4] A Faster Third-Order Masking of Lookup Tables
    Alexander A.
    Valiveti A.
    Vivek S.
    IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022, 2023 (01): : 538 - 556
  • [5] A new smoothness indicator for third-order WENO scheme
    Wu, Xiaoshuai
    Liang, Jianhan
    Zhao, Yuxin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 81 (07) : 451 - 459
  • [6] Third-order WENO scheme with a new smoothness indicator
    Gande, Naga Raju
    Rathod, Yogita
    Rathan, Samala
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (02) : 90 - 112
  • [7] Finding Approximate Local Minima Faster than Gradient Descent
    Agarwal, Naman
    Allen-Zhu, Zeyuan
    Bullins, Brian
    Hazan, Elad
    Ma, Tengyu
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 1195 - 1199
  • [8] An adaptive high order method for finding third-order critical points of nonconvex optimization
    Zhu, Xihua
    Han, Jiangze
    Jiang, Bo
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (02) : 369 - 392
  • [9] An adaptive high order method for finding third-order critical points of nonconvex optimization
    Xihua Zhu
    Jiangze Han
    Bo Jiang
    Journal of Global Optimization, 2022, 84 : 369 - 392
  • [10] Algorithms for the construction of third-order local exponential splines with equidistant knots
    Shevaldin, V. T.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (03): : 279 - 287