Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms

被引:8
|
作者
Papageorgiou, Nikolaos S. [1 ]
Zhang, Youpei [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
关键词
Frozen variable method; Nonlinear regularity; Minimal positive solution; Leray-Schauder alternative principle; Truncation; Fixed point; Convection term; LINEAR ELLIPTIC-EQUATIONS; DOUBLE-PHASE PROBLEMS; POSITIVE SOLUTIONS; (P; DEPENDENCE; UNIQUENESS; SIGN;
D O I
10.1186/s13661-020-01450-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by a general nonhomogeneous differential operator and with a reaction exhibiting the combined effects of a parametric singular term plus a Caratheodory perturbation f (z, x, y) which is only locally defined in x is an element of R. Using the frozen variable method, we prove the existence of a positive smooth solution, when the parameter is small.
引用
收藏
页数:21
相关论文
共 50 条