Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms

被引:8
|
作者
Papageorgiou, Nikolaos S. [1 ]
Zhang, Youpei [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
关键词
Frozen variable method; Nonlinear regularity; Minimal positive solution; Leray-Schauder alternative principle; Truncation; Fixed point; Convection term; LINEAR ELLIPTIC-EQUATIONS; DOUBLE-PHASE PROBLEMS; POSITIVE SOLUTIONS; (P; DEPENDENCE; UNIQUENESS; SIGN;
D O I
10.1186/s13661-020-01450-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by a general nonhomogeneous differential operator and with a reaction exhibiting the combined effects of a parametric singular term plus a Caratheodory perturbation f (z, x, y) which is only locally defined in x is an element of R. Using the frozen variable method, we prove the existence of a positive smooth solution, when the parameter is small.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Dirichlet problems with singular and gradient quadratic lower order terms
    Boccardo, Lucio
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (03) : 411 - 426
  • [22] BOUNDARY BEHAVIOR OF SOLUTIONS TO A SINGULAR DIRICHLET PROBLEM WITH A NONLINEAR CONVECTION
    Li, Bo
    Zhang, Zhijun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [23] Weak maximum principle for Dirichlet problems with convection or drift terms
    Boccardo, Lucio
    MATHEMATICS IN ENGINEERING, 2021, 3 (03):
  • [24] Positive solutions for nonlinear parametric singular Dirichlet problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    BULLETIN OF MATHEMATICAL SCIENCES, 2019, 9 (03)
  • [25] Continuity results for parametric nonlinear singular Dirichlet problems
    Bai, Yunru
    Motreanu, Dumitru
    Zeng, Shengda
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 372 - 387
  • [26] SINGULAR NONLINEAR DIRICHLET PROBLEMS - PRELIMINARY-REPORT
    CRANDALL, MG
    RABINOWITZ, PH
    TARTAR, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A130 - A130
  • [27] MULTIPLE SOLUTIONS FOR NONLINEAR DIRICHLET PROBLEMS WITH CONCAVE TERMS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    MATHEMATICA SCANDINAVICA, 2013, 113 (02) : 206 - 247
  • [28] ON RADIALLY SYMMETRICAL SOLUTIONS TO SINGULAR NONLINEAR DIRICHLET PROBLEMS
    JIANG, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (02) : 159 - 163
  • [29] Elliptic problems with nonhomogeneous boundary condition and derivatives of nonlinear terms
    Motreanu, Dumitru
    Motreanu, Viorica V.
    BOUNDARY VALUE PROBLEMS, 2014,
  • [30] Elliptic problems with nonhomogeneous boundary condition and derivatives of nonlinear terms
    Dumitru Motreanu
    Viorica V Motreanu
    Boundary Value Problems, 2014