Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [41] A Review of Missing Data Handling Methods in Education Research
    Cheema, Jehanzeb R.
    REVIEW OF EDUCATIONAL RESEARCH, 2014, 84 (04) : 487 - 508
  • [42] Methods for handling missing data in palliative care research
    Fielding, S.
    Fayers, P. M.
    Loge, J. H.
    Jordhoy, M. S.
    Kaasa, S.
    PALLIATIVE MEDICINE, 2006, 20 (08) : 791 - 798
  • [43] Comparative methods for handling missing data in large databases
    Henry, Antonia J.
    Hevelone, Nathanael D.
    Lipsitz, Stuart
    Nguyen, Louis L.
    JOURNAL OF VASCULAR SURGERY, 2013, 58 (05) : 1353 - +
  • [44] Identifying missing data handling methods with text mining
    Boros, Krisztian
    Kmetty, Zoltan
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [45] Evaluation and automatic selection of methods for handling missing data
    Zou, Y
    An, AJ
    Huang, XJ
    2005 IEEE International Conference on Granular Computing, Vols 1 and 2, 2005, : 728 - 733
  • [46] MIXTURE MODELING METHODS FOR CAUSAL INFERENCE WITH MULTILEVEL DATA
    Kim, Jee-Seon
    Steiner, Peter M.
    Lim, Wen-Chiang
    ADVANCES IN MULTILEVEL MODELING FOR EDUCATIONAL RESEARCH: ADDRESSING PRACTICAL ISSUES FOUND IN REAL-WORLD APPLICATIONS, 2016, : 335 - 359
  • [47] Causal Inference Methods and their Challenges: The Case of 311 Data
    Yusuf, Farzana Beente
    Cheng, Shaoming
    Ganapati, Sukumar
    Narasimhan, Giri
    PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, DGO 2021, 2021, : 49 - 59
  • [48] ASSESSING STATISTICAL METHODS FOR CAUSAL INFERENCE IN OBSERVATIONAL DATA
    Parks, D. C.
    Lin, X.
    Lee, K. R.
    VALUE IN HEALTH, 2014, 17 (07) : A731 - A731
  • [49] Causal inference with confounders missing not at random
    Yang, S.
    Wang, L.
    Ding, P.
    BIOMETRIKA, 2019, 106 (04) : 875 - 888
  • [50] Estimation of causal quantile effects with a binary instrumental variable and censored data
    Wei, Bo
    Peng, Limin
    Zhang, Mei-Jie
    Fine, Jason P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (03) : 559 - 578