Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [31] Comparison of Methods for Handling Missing Covariate Data
    Johansson, Asa M.
    Karlsson, Mats O.
    AAPS JOURNAL, 2013, 15 (04): : 1232 - 1241
  • [32] Doubly robust estimation in missing data and causal inference models
    Bang, H
    BIOMETRICS, 2005, 61 (04) : 962 - 972
  • [33] SEMIPARAMETRIC ESTIMATION WITH DATA MISSING NOT AT RANDOM USING AN INSTRUMENTAL VARIABLE
    Sun, BaoLuo
    Liu, Lan
    Miao, Wang
    Wirth, Kathleen
    Robins, James
    Tchetgen, Eric J. Tchetgen
    STATISTICA SINICA, 2018, 28 (04) : 1965 - 1983
  • [34] Discovering Ancestral Instrumental Variables for Causal Inference From Observational Data
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Yu, Kui
    Le, Thuc Duy
    Liu, Jixue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11542 - 11552
  • [35] Causal inference with imperfect instrumental variables
    Miklin, Nikolai
    Gachechiladze, Mariami
    Moreno, George
    Chaves, Rafael
    JOURNAL OF CAUSAL INFERENCE, 2022, 10 (01) : 45 - 63
  • [36] Causal inference with missing exposure information: Methods and applications to an obstetric study
    Zhang, Zhiwei
    Liu, Wei
    Zhang, Bo
    Tang, Li
    Zhang, Jun
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 2053 - 2066
  • [37] Bayesian inference for Common cause failure rate based on causal inference with missing data
    Nguyen, H. D.
    Gouno, E.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197
  • [38] Bayesian jackknife empirical likelihood-based inference for missing data and causal inference
    Chen, Sixia
    Wang, Yuke
    Zhao, Yichuan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025, 53 (01):
  • [39] Addressing missing data in randomized clinical trials: A causal inference perspective
    Cornelisz, Ilja
    Cuijpers, Pim
    Donker, Tara
    van Klaveren, Chris
    PLOS ONE, 2020, 15 (07):
  • [40] Coarsened Propensity Scores and Hybrid Estimators for Missing Data and Causal Inference
    Zhou, Jie
    Zhang, Zhiwei
    Li, Zhaohai
    Zhang, Jun
    INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (03) : 449 - 471