Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [21] The Causal Effect of Class Size on Academic Achievement: Multivariate Instrumental Variable Estimators With Data Missing at Random
    Shin, Yongyun
    Raudenbush, Stephen W.
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2011, 36 (02) : 154 - 185
  • [22] A nonparametric binomial likelihood approach for causal inference in instrumental variable models
    Kwonsang Lee
    Bhaswar B. Bhattacharya
    Jing Qin
    Dylan S. Small
    Journal of the Korean Statistical Society, 2023, 52 : 1055 - 1077
  • [23] Implementation of Instrumental Variable Bounds for Data Missing Not at Random
    Marden, Jessica R.
    Wang, Linbo
    Tchetgen, Eric J. Tchetgen
    Walter, Stefan
    Glymour, M. Maria
    Wirth, Kathleen E.
    EPIDEMIOLOGY, 2018, 29 (03) : 364 - 368
  • [24] Doubly robust estimation of the causal effects in the causal inference with missing outcome data
    Han F.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (Suppl 1) : 11 - 11
  • [25] A study of handling missing data methods for big data
    Ezzine, Imane
    Benhlima, Laila
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 498 - 501
  • [26] Robust causal inference with continuous instruments using the local instrumental variable curve
    Kennedy, Edward H.
    Lorch, Scott
    Small, Dylan S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (01) : 121 - 143
  • [27] Methods for Handling Missing Secondary Respondent Data
    Young, Rebekah
    Johnson, David
    JOURNAL OF MARRIAGE AND FAMILY, 2013, 75 (01) : 221 - 234
  • [28] Comparison of Methods for Handling Missing Covariate Data
    Åsa M. Johansson
    Mats O. Karlsson
    The AAPS Journal, 2013, 15 : 1232 - 1241
  • [29] Handling Missing Data Problems with Sampling Methods
    Houari, Rima
    Bounceur, Ahcene
    Tari, A-Kamel
    Kechadi, M-Tahar
    2014 INTERNATIONAL CONFERENCE ON ADVANCED NETWORKING DISTRIBUTED SYSTEMS AND APPLICATIONS (INDS 2014), 2014, : 99 - 104
  • [30] Taxonomy of Missing Data along with their handling Methods
    Tripathi, Ashok Kumar
    Rathee, Geetanjali
    Saini, Hemraj
    2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, : 463 - 468