Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [1] Instrumental variable methods for causal inference
    Baiocchi, Michael
    Cheng, Jing
    Small, Dylan S.
    STATISTICS IN MEDICINE, 2014, 33 (13) : 2297 - 2340
  • [2] Connecting Instrumental Variable methods for causal inference to the Estimand Framework
    Bowden, Jack
    Bornkamp, Bjoern
    Glimm, Ekkehard
    Bretz, Frank
    STATISTICS IN MEDICINE, 2021, 40 (25) : 5605 - 5627
  • [3] Instrumental variable methods for causal inference: early work and recent developments
    Baker, Stuart G.
    STATISTICS IN MEDICINE, 2014, 33 (17) : 3058 - 3059
  • [4] Ivy: Instrumental Variable Synthesis for Causal Inference
    Kuangy, Zhaobin
    Sala, Frederic
    Sohoni, Nimit
    Wu, Sen
    Cordova-Palomera, Aldo
    Dunnmon, Jared
    Priest, James
    Re, Christopher
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 398 - 409
  • [5] Instrumental variable methods for causal inference (vol 33, pg 2297, 2014)
    Baiocchi, Michael
    Cheng, Jing
    Small, Dylan
    STATISTICS IN MEDICINE, 2014, 33 (27) : 4859 - 4860
  • [6] Instrumental variable methods for causal inference (vol 33, pg 4859, 2014)
    Baiocchi, Michael
    Cheng, Jing
    Small, Dylan S.
    STATISTICS IN MEDICINE, 2019, 38 (20) : 3960 - 3960
  • [7] Causal Inference: A Missing Data Perspective
    Ding, Peng
    Li, Fan
    STATISTICAL SCIENCE, 2018, 33 (02) : 214 - 237
  • [8] Mendelian randomization as an instrumental variable approach to causal inference
    Didelez, Vanessa
    Sheehan, Nuala
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) : 309 - 330
  • [9] Hypothetical Estimands in Clinical Trials: A Unification of Causal Inference and Missing Data Methods
    Parra, Camila Olarte
    Daniel, Rhian M.
    Bartlett, Jonathan W.
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2023, 15 (02): : 421 - 432
  • [10] Bayesian Nonparametrics for Causal Inference and Missing Data
    Hahn, P. Richard
    Daniels, Michael J.
    Linero, Antonio
    Roy, Jason
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,