Investigation of Void Fraction Schemes for Use with CFD-DEM Simulations of Fluidized Beds

被引:115
|
作者
Clarke, Daniel A. [1 ]
Sederman, Andrew J. [2 ]
Gladden, Lynn F. [2 ]
Holland, Daniel J. [1 ]
机构
[1] Univ Canterbury, Dept Chem & Proc Engn, Private Bag 4800, Christchurch 8140, New Zealand
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge Univ West Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
关键词
DISCRETE ELEMENT MODEL; MAGNETIC-RESONANCE MEASUREMENTS; GRANULAR-MATERIALS; VALIDATION; MFIX; SUSPENSIONS; SOFTWARE; SPHERES; VOLUME; FORCE;
D O I
10.1021/acs.iecr.7b04638
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper investigates the spatial resolution of computational fluid dynamics-discrete element method (CFD-DEM) simulations of a bubbling fluidized bed for seven different void fraction schemes. Fluid grids with cell sizes of 3.5, 1.6, and 1.3 particle diameters were compared. The particle velocity maps from all of the void fraction schemes were in good qualitative agreement with the experimental data collected using magnetic resonance imaging (MRI). Refining the fluid grid improved the quantitative agreement due to a more accurate representation of flow near the gas distributor. The approach proposed by Khawaja et al. [J. Comput. Multiphase Flows 2012, 4, 183-192] provided the closest match to the exact void fraction though only the particle centered method differed significantly. These results indicate that the fluid grid used for CFD-DEM simulations must be sufficiently fine to represent the inlet flow realistically and that a void fraction scheme such as that proposed by Khawaja be used.
引用
收藏
页码:3002 / 3013
页数:12
相关论文
共 50 条
  • [21] Energy budget of cold and hot gas-solid fluidized beds through CFD-DEM simulations
    Bi, Lei
    Jiao, Yunpeng
    Liu, Chunjiang
    Chen, Jianhua
    Ge, Wei
    PARTICUOLOGY, 2024, 89 : 153 - 171
  • [22] Sound waves in fluidized bed using CFD-DEM simulations
    Khawaja, Hassan Abbas
    PARTICUOLOGY, 2018, 38 : 126 - 133
  • [23] Investigation of interstitial fluid effect on the hydrodynamics of granular in liquid-solid fluidized beds with CFD-DEM
    Liu, Guodong
    Yu, Fan
    Wang, Shuai
    Liao, Pengwei
    Zhang, Wenrui
    Han, Bing
    Lu, Huilin
    POWDER TECHNOLOGY, 2017, 322 : 353 - 368
  • [24] CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds
    Liu, Runjia
    Zhou, Zongyan
    Xiao, Rui
    Yu, Aibing
    POWDER TECHNOLOGY, 2020, 361 : 315 - 325
  • [25] An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds
    Lin, Junjie
    Luo, Kun
    Wang, Shuai
    Hu, Chenshu
    Fan, Jianren
    ADVANCED POWDER TECHNOLOGY, 2020, 31 (10) : 4420 - 4427
  • [26] Comparison of different drag models in CFD-DEM simulations of spouted beds
    Marchelli, Filippo
    Hou, Qinfu
    Bosio, Barbara
    Arato, Elisabetta
    Yu, Aibing
    POWDER TECHNOLOGY, 2020, 360 : 1253 - 1270
  • [27] CFD-DEM investigation of a micro-circulating fluidized bed
    Fang, Ming-Ming
    Luo, Kun
    Yang, Shi-Liang
    Zhang, Ke
    Fan, Jian-Ren
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2015, 36 (03): : 545 - 550
  • [28] CFD-DEM mixing of rod-like and spherical particles in fluidized beds
    Kazemi, Saman
    Zarghami, Reza
    Mostoufi, Navid
    Sotudeh-Gharebagh, Rahmat
    Chaouki, Jamal
    POWDER TECHNOLOGY, 2024, 442
  • [29] Coupling of CFD-DEM and reaction model for 3D fluidized beds
    Xie, Jun
    Zhong, Wenqi
    Shao, Yingjuan
    Li, Kaixi
    POWDER TECHNOLOGY, 2019, 353 : 72 - 83
  • [30] CFD-DEM modeling of breakage of non-spherical particles in fluidized beds
    Aali, Hamed
    Kazemi, Saman
    Larijani, Roxana Saghafian
    Zarghami, Reza
    Mostoufi, Navid
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 189 : 593 - 605