Energy budget of cold and hot gas-solid fluidized beds through CFD-DEM simulations

被引:0
|
作者
Bi, Lei [1 ,2 ]
Jiao, Yunpeng [2 ,3 ]
Liu, Chunjiang [1 ]
Chen, Jianhua [2 ]
Ge, Wei [2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
来源
PARTICUOLOGY | 2024年 / 89卷
基金
中国国家自然科学基金;
关键词
Energy budget; Gas-solid fluidization; CFD-DEM; Regime transition; Heat transfer mechanism; MAGNETIC-RESONANCE MEASUREMENTS; DISCRETE ELEMENT MODEL; HEAT-TRANSFER; PARTICLE INTERACTIONS; FLOW; VALIDATION; TEMPERATURE; TRANSITIONS; TRANSPORT; PRESSURE;
D O I
10.1016/j.partic.2023.10.006
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Direct energy budget is carried out for both cold and hot flow in gas-solid fluidization systems. First, the energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Then based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. In order to clarify the energy budget, it is important to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can well indicate the onset of bubbling and turbulent, while the variation of local energy consumption terms can reflect the evolution of heterogeneous structures. For the hot flow, different heat transfer mechanisms are analyzed and the solver is modified to reproduce the experimental results. The impact of the heat transfer mechanisms and heat production on energy consumption is also investigated. The proposed budget method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems. (c) 2023 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [1] CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds
    Yang, Yao
    Zi, Can
    Huang, Zhengliang
    Wang, Jingdai
    Lungu, Musango
    Liao, Zuwei
    Yang, Yongrong
    Su, Hongye
    POWDER TECHNOLOGY, 2017, 308 : 422 - 433
  • [2] Particle size segregation in bi and penta-disperse gas-solid fluidized beds: CFD-DEM and recurrence CFD simulations
    Pirker, S.
    Atzori, M.
    Heinrich, S.
    Lichtenegger, T.
    CHEMICAL ENGINEERING SCIENCE, 2025, 309
  • [3] Simulating wet gas-solid fluidized beds using coarse-grid CFD-DEM
    Girardi, M.
    Radl, S.
    Sundaresan, S.
    CHEMICAL ENGINEERING SCIENCE, 2016, 144 : 224 - 238
  • [4] CFD-DEM study on the interaction between triboelectric charging and fluidization of particles in gas-solid fluidized beds
    Wang, Chunlei
    Liu, Guodong
    Zhai, Zhanhu
    Guo, Xinyao
    Wu, Yao
    POWDER TECHNOLOGY, 2023, 419
  • [5] Effect of flow pulsation on fluidization degree of gas-solid fluidized beds by using coupled CFD-DEM
    Namdarkedenji, Reza
    Hashemnia, Kamyar
    Emdad, Homayoun
    ADVANCED POWDER TECHNOLOGY, 2018, 29 (12) : 3527 - 3541
  • [6] Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds
    Peng, Zhengbiao
    Doroodchi, Elham
    Luo, Caimao
    Moghtaderi, Behdad
    AICHE JOURNAL, 2014, 60 (06) : 2000 - 2018
  • [7] Scaling method of CFD-DEM simulations for gas-solid flows in risers
    Mu L.
    Buist K.A.
    Kuipers J.A.M.
    Deen N.G.
    Chemical Engineering Science: X, 2020, 6
  • [8] CFD-DEM simulation of polydisperse gas-solid flow of Geldart A particles in bubbling micro-fluidized beds
    Li, Shijiao
    Zhao, Peng
    Xu, Ji
    Zhang, Li
    Wang, Junwu
    CHEMICAL ENGINEERING SCIENCE, 2022, 253
  • [9] CFD-DEM investigation of the gas-solid flow characteristics in a fluidized bed dryer
    Ma, Zhiyang
    Tu, Qiuya
    Liu, Zaixing
    Xu, Yi
    Ge, Ruihuan
    Wang, Haigang
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 196 : 235 - 253
  • [10] A new method for validation of a CFD-DEM model of gas-solid fluidized bed
    Karimi, Maryam
    Mostoufi, Navid
    Zarghami, Reza
    Sotudeh-Gharebagh, Rahmat
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2012, 47 : 133 - 140