Energy budget of cold and hot gas-solid fluidized beds through CFD-DEM simulations

被引:0
|
作者
Bi, Lei [1 ,2 ]
Jiao, Yunpeng [2 ,3 ]
Liu, Chunjiang [1 ]
Chen, Jianhua [2 ]
Ge, Wei [2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
来源
PARTICUOLOGY | 2024年 / 89卷
基金
中国国家自然科学基金;
关键词
Energy budget; Gas-solid fluidization; CFD-DEM; Regime transition; Heat transfer mechanism; MAGNETIC-RESONANCE MEASUREMENTS; DISCRETE ELEMENT MODEL; HEAT-TRANSFER; PARTICLE INTERACTIONS; FLOW; VALIDATION; TEMPERATURE; TRANSITIONS; TRANSPORT; PRESSURE;
D O I
10.1016/j.partic.2023.10.006
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Direct energy budget is carried out for both cold and hot flow in gas-solid fluidization systems. First, the energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Then based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. In order to clarify the energy budget, it is important to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can well indicate the onset of bubbling and turbulent, while the variation of local energy consumption terms can reflect the evolution of heterogeneous structures. For the hot flow, different heat transfer mechanisms are analyzed and the solver is modified to reproduce the experimental results. The impact of the heat transfer mechanisms and heat production on energy consumption is also investigated. The proposed budget method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems. (c) 2023 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [21] The research of gas-solid fluidized bed bubbling behavior based on CFD-DEM coupled simulation
    Xie, Yuhui
    Chen, Yibiao
    Fang, Zheng
    Zhou, Hongming
    Wei, Shuaikang
    Yang, Lei
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 195 : 166 - 180
  • [22] CFD-DEM simulation of gas-solid flow of wet particles in a fluidized bed with immersed tubes
    Zhao, Meng
    Liu, Daoyin
    Ma, Jiliang
    Chen, Xiaoping
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 156
  • [23] On the treatment of bed-to-wall heat transfer in CFD-DEM simulations of gas-fluidized beds
    Liu, Xin
    Deen, Niels G.
    Tang, Yali
    CHEMICAL ENGINEERING SCIENCE, 2021, 236
  • [24] CFD-DEM simulation of the gas-solid flow in a cyclone separator
    Chu, K. W.
    Wang, B.
    Xu, D. L.
    Chen, Y. X.
    Yu, A. B.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (05) : 834 - 847
  • [25] CFD-DEM simulations of a fluidized bed crystallizer
    Kerst, Kristin
    Roloff, Christoph
    de Souza, Luis G. Medeiros
    Bartz, Antje
    Seidel-Morgenstern, Andreas
    Thevenin, Dominique
    Janiga, Gabor
    CHEMICAL ENGINEERING SCIENCE, 2017, 165 : 1 - 13
  • [26] CFD Simulation of the Bubbling and Slugging Gas-Solid Fluidized Beds
    Hosseini, Seyyed Hossein
    Zhong, Wenqi
    Esfahany, Mohsen Nasr
    Pourjafar, Leila
    Azizi, Salar
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (04): : 0413011 - 04130110
  • [27] Analysis of the Effect of Small Amounts of Liquid on Gas-Solid Fluidization Using CFD-DEM Simulations
    Boyce, C. M.
    Ozel, A.
    Kolehmainen, J.
    Sundaresan, S.
    AICHE JOURNAL, 2017, 63 (12) : 5290 - 5302
  • [28] Particle flow characteristics in a gas-solid fluidized bed: a microscopic perspective by coupled CFD-DEM approach
    Zhao, Zhenjiang
    Bai, Ling
    Shi, Weidong
    Li, Linjian
    El-Emam, Mahmoud A.
    Agarwal, Ramesh
    Zhou, Ling
    COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (03) : 1375 - 1389
  • [29] Development and verification of coarse-grain CFD-DEM for nonspherical particles in a gas-solid fluidized bed
    Zhou, Lianyong
    Ma, Huaqing
    Liu, Zihan
    Zhao, Yongzhi
    AICHE JOURNAL, 2022, 68 (11)
  • [30] Fluidized bed gas-solid heat transfer using a CFD-DEM coarse-graining technique
    de Munck, M. J. A.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2023, 280