Investigation of Void Fraction Schemes for Use with CFD-DEM Simulations of Fluidized Beds

被引:115
|
作者
Clarke, Daniel A. [1 ]
Sederman, Andrew J. [2 ]
Gladden, Lynn F. [2 ]
Holland, Daniel J. [1 ]
机构
[1] Univ Canterbury, Dept Chem & Proc Engn, Private Bag 4800, Christchurch 8140, New Zealand
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge Univ West Site,Philippa Fawcett Dr, Cambridge CB3 0AS, England
关键词
DISCRETE ELEMENT MODEL; MAGNETIC-RESONANCE MEASUREMENTS; GRANULAR-MATERIALS; VALIDATION; MFIX; SUSPENSIONS; SOFTWARE; SPHERES; VOLUME; FORCE;
D O I
10.1021/acs.iecr.7b04638
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper investigates the spatial resolution of computational fluid dynamics-discrete element method (CFD-DEM) simulations of a bubbling fluidized bed for seven different void fraction schemes. Fluid grids with cell sizes of 3.5, 1.6, and 1.3 particle diameters were compared. The particle velocity maps from all of the void fraction schemes were in good qualitative agreement with the experimental data collected using magnetic resonance imaging (MRI). Refining the fluid grid improved the quantitative agreement due to a more accurate representation of flow near the gas distributor. The approach proposed by Khawaja et al. [J. Comput. Multiphase Flows 2012, 4, 183-192] provided the closest match to the exact void fraction though only the particle centered method differed significantly. These results indicate that the fluid grid used for CFD-DEM simulations must be sufficiently fine to represent the inlet flow realistically and that a void fraction scheme such as that proposed by Khawaja be used.
引用
收藏
页码:3002 / 3013
页数:12
相关论文
共 50 条
  • [41] Investigation of the influence of wetting on the particle dynamics in a fluidized bed rotor granulator by MPT measurements and CFD-DEM simulations
    Grohn, Philipp
    Oesau, Tobias
    Heinrich, Stefan
    Antonyuk, Sergiy
    POWDER TECHNOLOGY, 2022, 408
  • [42] Structured bubbling in layered gas-fluidized beds subject to vibration: A CFD-DEM study
    Guo, Qiang
    Boyce, Christopher M.
    AICHE JOURNAL, 2022, 68 (07)
  • [43] CFD-DEM simulation of fluorination reaction in fluidized beds with local grid and time refinement method
    Qiu, Mofan
    Jiang, Lin
    Liu, Rongzhen
    Tang, Yaping
    Liu, Malin
    PARTICUOLOGY, 2024, 84 : 145 - 157
  • [44] Effect of drag models on CFD-DEM predictions of bubbling fluidized beds with Geldart D particles
    Agrawal, Vaibhav
    Shinde, Yogesh
    Shah, Milinkumar T.
    Utikar, Ranjeet P.
    Pareek, Vishnu K.
    Joshi, Jyeshtharaj B.
    ADVANCED POWDER TECHNOLOGY, 2018, 29 (11) : 2658 - 2669
  • [45] Investigation on the mechanism of size effect on suffusion via CFD-DEM simulations
    Zhu, Yanzhen
    Hu, Lingkai
    Xu, Shanlin
    Hu, Zheng
    Sun, Honglei
    Weng, Zhenqi
    Wang, Yongming
    ACTA GEOTECHNICA, 2025, 20 (01) : 347 - 364
  • [46] Multiscale investigation of tube erosion in fluidized bed based on CFD-DEM simulation
    Xu, Lei
    Luo, Kun
    Zhao, Yongzhi
    Fan, Jianren
    Cen, Kefa
    CHEMICAL ENGINEERING SCIENCE, 2018, 183 : 60 - 74
  • [47] Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics
    de Oliveira, D. G.
    Wu, C. L.
    Nandakumar, K.
    POWDER TECHNOLOGY, 2020, 363 : 745 - 756
  • [48] Study on the char combustion in a fluidized bed by CFD-DEM simulations: Influences of fuel properties
    Xie, Jun
    Zhong, Wenqi
    Shao, Yingjuan
    POWDER TECHNOLOGY, 2021, 394 : 20 - 34
  • [49] CFD-DEM simulation of tube erosion in a fluidized bed
    Zhao, Yongzhi
    Xu, Lei
    Zheng, Jinyang
    AICHE JOURNAL, 2017, 63 (02) : 418 - 437
  • [50] Comparison of CFD-DEM and TFM simulations of single bubble injection in 3D gas-fluidized beds with MRI results
    Xi, K.
    Guo, Q.
    Boyce, C. M.
    CHEMICAL ENGINEERING SCIENCE, 2021, 243