Gene Expression Data Classification Using Independent Variable Group Analysis

被引:0
|
作者
Zheng, Chunhou [2 ,3 ]
Zhang, Lei [1 ]
Li, Bo [3 ]
Xu, Min [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Shandong Sheng 276826, Peoples R China
[3] Chinese Acad Sci, Inst Machine Intelligence, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Independent variable group analysis; Gene selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method. we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
引用
收藏
页码:243 / +
页数:3
相关论文
共 50 条
  • [41] Topographic independent component analysis of gene expression time series data
    Kim, S
    Choi, S
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 462 - 469
  • [42] A review of independent component analysis application to microarray gene expression data
    Kong, Wei
    Vanderburg, Charles R.
    Gunshin, Hiromi
    Rogers, Jack T.
    Huang, Xudong
    BIOTECHNIQUES, 2008, 45 (05) : 501 - +
  • [43] Meta-Analysis Based Variable Selection for Gene Expression Data
    Li, Quefeng
    Wang, Sijian
    Huang, Chiang-Ching
    Yu, Menggang
    Shao, Jun
    BIOMETRICS, 2014, 70 (04) : 872 - 880
  • [44] Improving feature selection performance for classification of gene expression data using Harris Hawks optimizer with variable neighborhood learning
    Qu, Chiwen
    Zhang, Lupeng
    Li, Jinlong
    Deng, Fang
    Tang, Yifan
    Zeng, Xiaomin
    Peng, Xiaoning
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [45] Gene Expression Data Classification by VVRKFA
    Ghorai, Santanu
    Mukherjee, Anirban
    Dutta, Pranab K.
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 330 - 335
  • [46] Fuzzy classification of gene expression data
    Schaefer, Gerald
    Nakashima, Tomoharu
    Yokota, Yasuyuki
    Ishibuchi, Hisao
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1095 - +
  • [47] Feature Selection and Classification for Gene Expression Data using Evolutionary Computation
    Banka, Haider
    Dara, Suresh
    2012 23RD INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA), 2012, : 185 - 189
  • [48] Classification of Leukemia Gene Expression Data Using Particle Swarm Optimization
    Liu, Yajie
    Shi, Xinling
    An, Zhenzhou
    2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 241 - 244
  • [49] Gene expression data classification using locally linear discriminant embedding
    Li, Bo
    Zheng, Chun-Hou
    Huang, De-Shuang
    Zhang, Lei
    Han, Kyungsook
    COMPUTERS IN BIOLOGY AND MEDICINE, 2010, 40 (10) : 802 - 810
  • [50] Gene expression data classification using topology and machine learning models
    Tamal K. Dey
    Sayan Mandal
    Soham Mukherjee
    BMC Bioinformatics, 22