Gene Expression Data Classification Using Independent Variable Group Analysis

被引:0
|
作者
Zheng, Chunhou [2 ,3 ]
Zhang, Lei [1 ]
Li, Bo [3 ]
Xu, Min [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Shandong Sheng 276826, Peoples R China
[3] Chinese Acad Sci, Inst Machine Intelligence, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Independent variable group analysis; Gene selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method. we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
引用
收藏
页码:243 / +
页数:3
相关论文
共 50 条
  • [31] Generalized discriminant analysis for tumor classification with gene expression data
    Yang, Wen-Hui
    Dai, Dao-Qing
    Yan, Hong
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 4322 - +
  • [32] Gene expression data classification with kernel principal component analysis
    Liu, ZQ
    Chen, DC
    Bensmail, H
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2005, (02): : 155 - 159
  • [33] Relative evolutionary hierarchical analysis for gene expression data classification
    Czajkowski, Marcin
    Kretowski, Marek
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 1156 - 1164
  • [34] Independent arrays or independent time courses for gene expression time series data analysis
    Kim, Sookjeong
    Kim, Jong Kyoung
    Choi, Seungjin
    NEUROCOMPUTING, 2008, 71 (10-12) : 2377 - 2387
  • [35] Ant Colony Optimisation Classification for Gene Expression Data Analysis
    Schaefer, Gerald
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 463 - 469
  • [36] A BLOOD GROUP B GENE WITH VARIABLE EXPRESSION
    BENNETT, MH
    PLAUT, G
    MOURANT, AE
    BROMLEY, A
    JAMES, JD
    GILES, CM
    VOX SANGUINIS, 1962, 7 (05) : 579 - &
  • [37] Cluster analysis Using Gene Expression Data
    Divya
    Altaf, Insha
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [38] Pathway-Informed Classification System (PICS) for Cancer Analysis Using Gene Expression Data
    Young, Michael R.
    Craft, David L.
    CANCER INFORMATICS, 2016, 15 : 151 - 161
  • [39] Tissue classification through analysis of gene expression data using a new family of ART architectures
    Xu, R
    Anagnostopoulos, GC
    Wunsch, DC
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 300 - 304
  • [40] Gene expression signature discovery using independent component analysis
    Szu, H
    Portnoy, D
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, AND NEURAL NETWORKS, 2003, 5102 : 320 - 330