Gene Expression Data Classification Using Independent Variable Group Analysis

被引:0
|
作者
Zheng, Chunhou [2 ,3 ]
Zhang, Lei [1 ]
Li, Bo [3 ]
Xu, Min [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Biometr Res Ctr, Hong Kong, Hong Kong, Peoples R China
[2] Qufu Normal Univ, Coll Informat & Commun Technol, Shandong Sheng 276826, Peoples R China
[3] Chinese Acad Sci, Inst Machine Intelligence, Intelligent Comp Lab, Hefei 230031, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Gene expression data; Independent variable group analysis; Gene selection; Classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarrays are capable of detecting the expression levels of thousands of genes simultaneously. In this paper, a new method for gene selection based on independent variable group analysis is proposed. In this method. we first used t-statistics method to select a part of genes from the original data. Then we selected the key genes from the selected genes by t-statistics for tumor classification using IVGA. Finally, we used SVM to classify tumors based on the key genes selected using IVGA. To validate the efficiency, the proposed method is applied to classify three different DNA microarray data sets. The prediction results show that our method is efficient and feasible.
引用
收藏
页码:243 / +
页数:3
相关论文
共 50 条
  • [21] Bayesian classification of tumours by using gene expression data
    Mallick, BK
    Ghosh, D
    Ghosh, M
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 219 - 234
  • [22] Classification of gene expression data using fuzzy logic
    Ohno-Machado, L
    Vinterbo, S
    Weber, G
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2002, 12 (01) : 19 - 24
  • [23] Gene Expression Data Analysis for Classification of Bipolar Disorders
    Leska, V.
    Bei, E. S.
    Petrakis, E.
    Zervakis, M.
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 494 - 500
  • [24] Kernel independent component analysis for gene expression data clustering
    Jin, X
    Xu, AB
    Bie, RF
    Guo, P
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 454 - 461
  • [25] Analysis of Microarray Gene Expression Data Using Various Feature Selection and Classification Techniques
    Singh, W. Jai
    Kavitha, R. K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 105 - 108
  • [26] Efficient Gene Expression Data Analysis using ES-DBN For Microarray Cancer Data Classification
    Sucharita S.
    Sahu B.
    Swarnkar T.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [27] Multivariate analysis of fMRI group data using independent vector analysis
    Lee, Jong-Hwan
    Lee, Te-Won
    Jolesz, Ferenc A.
    Yoo, Seung-Schik
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 633 - +
  • [28] Latent Dirichlet Allocation for Classification using Gene Expression Data
    Yalamanchili, Hima Bindu
    Kho, Soon Jye
    Raymer, Michael L.
    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2017, : 39 - 44
  • [29] Sparse Representation for Classification of Tumors Using Gene Expression Data
    Hang, Xiyi
    Wu, Fang-Xiang
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2009,
  • [30] Classification of Gene Expression Data Using Multiobjective Differential Evolution
    Ma, Shijing
    Li, Xiangtao
    Wang, Yunhe
    ENERGIES, 2016, 9 (12)