Decentralized Trajectory and Power Control Based on Multi-Agent Deep Reinforcement Learning in UAV Networks

被引:9
|
作者
Chen, Binqiang [1 ]
Liu, Dong [1 ]
Hanzo, Lajos [2 ]
机构
[1] Beihang Univ, Beijing, Peoples R China
[2] Unveristy Southampton, Southampton, Hants, England
基金
中国国家自然科学基金;
关键词
UAV; multi-agent deep reinforcement learning; MADDPG; power allocation; trajectory planning; UNMANNED AERIAL VEHICLES;
D O I
10.1109/ICC45855.2022.9838637
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Unmanned aerial vehicles (UAVs) are capable of enhancing the coverage of existing cellular networks by acting as aerial base stations (ABSs). Due to the limited on-board battery capacity and dynamic topology of UAV networks, trajectory planning and interference coordination are crucial for providing satisfactory service, especially in emergency scenarios, where it is unrealistic to control all UAVs in a centralized manner by gathering global user information. Hence, we solve the decentralized joint trajectory and transmit power control problem of multi-UAV ABS networks. Our goal is to maximize the number of satisfied users, while minimizing the overall energy consumption of UAVs. To allow each UAV to adjust its position and transmit power solely based on local-rather the global-observations, a multi-agent reinforcement learning (MARL) framework is conceived. In order to overcome the non-stationarity issue of MARL and to endow the UAVs with distributed decision making capability, we resort to the centralized training in conjunction with decentralized execution paradigm. By judiciously designing the reward, we propose a decentralized joint trajectory and power control (DTPC) algorithm with significantly reduced complexity. Our simulation results show that the proposed DTPC algorithm outperforms the state-of-the-art deep reinforcement learning based methods, despite its low complexity.
引用
收藏
页码:3983 / 3988
页数:6
相关论文
共 50 条
  • [41] Trajectory Control in Self-sustainable UAV-aided mmWave Networks: A Constrained Multi-agent Reinforcement Learning Approach
    Chen, Wei
    Chang, Deng-Kai
    Chen, Yu-Jia
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 1017 - 1022
  • [42] Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks
    Wang, Jianhong
    Xu, Wangkun
    Gu, Yunjie
    Song, Wenbin
    Green, Tim C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] Optimal Frequency Reuse and Power Control in Multi-UAV Wireless Networks: Hierarchical Multi-Agent Reinforcement Learning Perspective
    Lee, Seungmin
    Lim, Suhyeon
    Chae, Seong Ho
    Jung, Bang Chul
    Park, Chan Yi
    Lee, Howon
    IEEE ACCESS, 2022, 10 : 39555 - 39565
  • [44] GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments
    Gadiraju, Divija Swetha
    Karmakar, Prasenjit
    Shah, Vijay K.
    Aggarwal, Vaneet
    INFORMATION, 2024, 15 (08)
  • [45] Blocklength Allocation and Power Control in UAV-Assisted URLLC System via Multi-agent Deep Reinforcement Learning
    Li, Xinmin
    Zhang, Xuhao
    Li, Jiahui
    Luo, Feiying
    Huang, Yi
    Zhang, Xiaoqiang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [46] An analysis of multi-agent reinforcement learning for decentralized inventory control systems
    Mousa, Marwan
    van de Berg, Damien
    Kotecha, Niki
    Chanona, Ehecatl Antonio del Rio
    Mowbray, Max
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 188
  • [47] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    Applied Intelligence, 2023, 53 : 9261 - 9269
  • [48] Multi-Agent Deep Reinforcement Learning Based Downlink Beamforming in Heterogeneous Networks
    Zhang, Zitian
    Hou, Jinbo
    Chu, Xiaoli
    Zhou, Haibo
    Wei, Guiyi
    Zhang, Jie
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (06) : 4247 - 4263
  • [49] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [50] Cellular UAV-to-Device Communications: Trajectory Design and Mode Selection by Multi-Agent Deep Reinforcement Learning
    Wu, Fanyi
    Zhang, Hongliang
    Wu, Jianjun
    Song, Lingyang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 4175 - 4189