Decentralized Trajectory and Power Control Based on Multi-Agent Deep Reinforcement Learning in UAV Networks

被引:9
|
作者
Chen, Binqiang [1 ]
Liu, Dong [1 ]
Hanzo, Lajos [2 ]
机构
[1] Beihang Univ, Beijing, Peoples R China
[2] Unveristy Southampton, Southampton, Hants, England
基金
中国国家自然科学基金;
关键词
UAV; multi-agent deep reinforcement learning; MADDPG; power allocation; trajectory planning; UNMANNED AERIAL VEHICLES;
D O I
10.1109/ICC45855.2022.9838637
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Unmanned aerial vehicles (UAVs) are capable of enhancing the coverage of existing cellular networks by acting as aerial base stations (ABSs). Due to the limited on-board battery capacity and dynamic topology of UAV networks, trajectory planning and interference coordination are crucial for providing satisfactory service, especially in emergency scenarios, where it is unrealistic to control all UAVs in a centralized manner by gathering global user information. Hence, we solve the decentralized joint trajectory and transmit power control problem of multi-UAV ABS networks. Our goal is to maximize the number of satisfied users, while minimizing the overall energy consumption of UAVs. To allow each UAV to adjust its position and transmit power solely based on local-rather the global-observations, a multi-agent reinforcement learning (MARL) framework is conceived. In order to overcome the non-stationarity issue of MARL and to endow the UAVs with distributed decision making capability, we resort to the centralized training in conjunction with decentralized execution paradigm. By judiciously designing the reward, we propose a decentralized joint trajectory and power control (DTPC) algorithm with significantly reduced complexity. Our simulation results show that the proposed DTPC algorithm outperforms the state-of-the-art deep reinforcement learning based methods, despite its low complexity.
引用
收藏
页码:3983 / 3988
页数:6
相关论文
共 50 条
  • [21] Multi-Target Pursuit by a Decentralized Heterogeneous UAV Swarm using Deep Multi-Agent Reinforcement Learning
    Kouzeghar, Maryam
    Song, Youngbin
    Meghjani, Malika
    Bouffanais, Roland
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 3289 - 3295
  • [22] Multi-agent Deep Reinforcement Learning for Non-Cooperative Power Control in Heterogeneous Networks
    Zhang, Lin
    Liang, Ying-Chang
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [23] Multi-Agent Reinforcement Learning-Based Resource Allocation for UAV Networks
    Cui, Jingjing
    Liu, Yuanwei
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) : 729 - 743
  • [24] Decentralized network level adaptive signal control by multi-agent deep reinforcement learning
    Gong, Yaobang
    Abdel-Aty, Mohamed
    Cai, Qing
    Rahman, Md Sharikur
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2019, 1
  • [25] Multi-Agent Deep Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 73 - 84
  • [26] Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks
    Nasir, Yasar Sinan
    Guo, Dongning
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) : 2239 - 2250
  • [27] Distributed Drive Autonomous Vehicle Trajectory Tracking Control Based on Multi-Agent Deep Reinforcement Learning
    Liu, Yalei
    Ding, Weiping
    Yang, Mingliang
    Zhu, Honglin
    Liu, Liyuan
    Jin, Tianshi
    MATHEMATICS, 2024, 12 (11)
  • [28] Multi-agent Deep Reinforcement Learning-based Trajectory Design for UAV-aided Edge Computing System
    Lu, Gengyuan
    Chang, Zheng
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [29] Deep Multi-Agent Reinforcement Learning for Decentralized Active Hypothesis Testing
    Szostak, Hadar
    Cohen, Kobi
    IEEE ACCESS, 2024, 12 : 130444 - 130459
  • [30] Decentralized Anomaly Detection via Deep Multi-Agent Reinforcement Learning
    Szostak, Hadar
    Cohen, Kobi
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,