GLIDE: Multi-Agent Deep Reinforcement Learning for Coordinated UAV Control in Dynamic Military Environments

被引:1
|
作者
Gadiraju, Divija Swetha [1 ]
Karmakar, Prasenjit [2 ]
Shah, Vijay K. [3 ]
Aggarwal, Vaneet [4 ]
机构
[1] Univ Nebraska, Sch Interdisciplinary Informat, Lincoln, NE 68588 USA
[2] IIT Kharagpur, Dept Comp Sci & Engn, Kharagpur 721302, India
[3] George Mason Univ, Dept Psychol, Fairfax, VA 22030 USA
[4] Purdue Univ, Sch Ind Engn, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
UAV swarm; military application; multi-agent reinforcement learning; LEVEL;
D O I
10.3390/info15080477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments. Deep Reinforcement Learning (DRL) can find effective strategies for multiple agents that need to cooperate to complete the task. In this article, the challenge of controlling the movement of a fleet of UAVs is addressed by Multi-Agent Deep Reinforcement Learning (MARL). The collaborative movement of the UAV fleet can be controlled centrally and also in a decentralized fashion, which is studied in this work. We consider a dynamic military environment with a fleet of UAVs, whose task is to destroy enemy targets while avoiding obstacles like mines. The UAVs inherently come with a limited battery capacity directing our research to focus on the minimum task completion time. We propose a continuous-time-based Proximal Policy Optimization (PPO) algorithm for multi-aGent Learning In Dynamic Environments (GLIDE). In GLIDE, the UAVs coordinate among themselves and communicate with the central base to choose the best possible action. The action control in GLIDE can be controlled in a centralized and decentralized way, and two algorithms called Centralized-GLIDE (C-GLIDE), and Decentralized-GLIDE (D-GLIDE) are proposed on this basis. We developed a simulator called UAV SIM, in which the mines are placed at randomly generated 2D locations unknown to the UAVs at the beginning of each episode. The performance of both the proposed schemes is evaluated through extensive simulations. Both C-GLIDE and D-GLIDE converge and have comparable performance in target destruction rate for the same number of targets and mines. We observe that D-GLIDE is up to 68% faster in task completion time compared to C-GLIDE and could keep more UAVs alive at the end of the task.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Dynamic Arterial Coordinated Control Based on Multi-agent Reinforcement Learning
    Fang, Liangliang
    Zhang, Weibin
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2716 - 2721
  • [2] Coordinated Slicing and Admission Control Using Multi-Agent Deep Reinforcement Learning
    Sulaiman, Muhammad
    Moayyedi, Arash
    Ahmadi, Mahdieh
    Salahuddin, Mohammad A.
    Boutaba, Raouf
    Saleh, Aladdin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (02): : 1110 - 1124
  • [3] Multi-Agent Deep Reinforcement Learning for Secure UAV Communications
    Zhang, Yu
    Zhuang, Zirui
    Gao, Feifei
    Wang, Jingyu
    Han, Zhu
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [4] Coordinated Multi-Agent Reinforcement Learning for Swarm Battery Control
    Ebell, Niklas
    Pruckner, Marco
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [5] Multi-Agent Motion Planning for Dense and Dynamic Environments via Deep Reinforcement Learning
    Semnani, Samaneh Hosseini
    Liu, Hugh
    Everett, Michael
    de Ruiter, Anton
    How, Jonathan P.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 3221 - 3226
  • [6] UAV Swarm Confrontation Based on Multi-agent Deep Reinforcement Learning
    Wang, Zhi
    Liu, Fan
    Guo, Jing
    Hong, Chen
    Chen, Ming
    Wang, Ershen
    Zhao, Yunbo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4996 - 5001
  • [7] Analysis of coordinated behavior structures with multi-agent deep reinforcement learning
    Miyashita, Yuki
    Sugawara, Toshiharu
    APPLIED INTELLIGENCE, 2021, 51 (02) : 1069 - 1085
  • [8] Multi-Agent Deep Reinforcement Learning for Coordinated Multipoint in Mobile Networks
    Schneider, Stefan
    Karl, Holger
    Khalili, Ramin
    Hecker, Artur
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 908 - 924
  • [9] Analysis of coordinated behavior structures with multi-agent deep reinforcement learning
    Yuki Miyashita
    Toshiharu Sugawara
    Applied Intelligence, 2021, 51 : 1069 - 1085
  • [10] Dynamic Multi-Agent Reinforcement Learning for Control Optimization
    Fagan, Derek
    Meier, Rene
    PROCEEDINGS FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 2014, : 99 - 104